Spaces:
Paused
Paused
File size: 1,598 Bytes
719468d 5211fb7 719468d 349f7e6 719468d b07bd25 719468d 2337841 719468d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import os
import json
import random
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline, DDIMScheduler
import gradio as gr
from gradio.components import Textbox, Image
repo_name = 'mohansathya/twosd' # YOUR REPO NAME
pipe2 = StableDiffusionPipeline.from_pretrained(repo_name, torch_dtype=torch.bfloat16)
def generate_query_response(prompt):
negative_prompt = "bad anatomy, ugly, deformed, desfigured, distorted, poorly drawn, blurry, low quality, low definition, lowres, out of frame, out of image, cropped, cut off, signature, watermark"
num_samples = 5
guidance_scale = 7.5
num_inference_steps = 6
height = 512
width = 512
seed = random.randint(0, 2147483647)
print("Seed: {}".format(str(seed)))
generator = torch.Generator(device='cpu').manual_seed(seed)
with autocast("cpu", dtype=torch.bfloat16), torch.inference_mode():
imgs = pipe2(
prompt,
negative_prompt=negative_prompt,
height=height, width=width,
num_images_per_prompt=num_samples,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
).images
for img in imgs:
return img
# Input from user
in_prompt = Textbox(label="Enter a prompt:")
# Output response
out_response = Image(label="Generated image:")
# Gradio interface to generate UI link
iface = gr.Interface(
fn=generate_query_response, inputs=in_prompt, outputs=out_response)
# Launch the interface to generate UI
iface.launch() |