twosd / app.py
mohansathya's picture
Update app.py
d141e7c
raw
history blame
1.59 kB
import os
import json
import random
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline, DDIMScheduler
import gradio as gr
from gradio.components import Textbox, Image
repo_name = 'mohansathya/twosd' # YOUR REPO NAME
pipe2 = StableDiffusionPipeline.from_pretrained(repo_name, torch_dtype=torch.float16).to('cuda')
def generate_query_response(prompt):
negative_prompt = "bad anatomy, ugly, deformed, desfigured, distorted, poorly drawn, blurry, low quality, low definition, lowres, out of frame, out of image, cropped, cut off, signature, watermark"
num_samples = 5
guidance_scale = 7.5
num_inference_steps = 30
height = 512
width = 512
seed = random.randint(0, 2147483647)
print("Seed: {}".format(str(seed)))
generator = torch.Generator(device='cuda').manual_seed(seed)
with autocast("cuda"), torch.inference_mode():
imgs = pipe2(
prompt,
negative_prompt=negative_prompt,
height=height, width=width,
num_images_per_prompt=num_samples,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
).images
for img in imgs:
return img
# Input from user
in_prompt = Textbox(label="Enter a prompt:")
# Output response
out_response = Image(label="Generated image:")
# Gradio interface to generate UI link
iface = gr.Interface(
fn=generate_query_response, inputs=in_prompt, outputs=out_response)
# Launch the interface to generate UI
iface.launch()