import os import json import random import torch from torch import autocast from diffusers import StableDiffusionPipeline, DDIMScheduler import gradio as gr from gradio.components import Textbox, Image repo_name = 'mohansathya/twosd' # YOUR REPO NAME pipe2 = StableDiffusionPipeline.from_pretrained(repo_name, torch_dtype=torch.float16).to('cuda') def generate_query_response(prompt): negative_prompt = "bad anatomy, ugly, deformed, desfigured, distorted, poorly drawn, blurry, low quality, low definition, lowres, out of frame, out of image, cropped, cut off, signature, watermark" num_samples = 5 guidance_scale = 7.5 num_inference_steps = 30 height = 512 width = 512 seed = random.randint(0, 2147483647) print("Seed: {}".format(str(seed))) generator = torch.Generator(device='cuda').manual_seed(seed) with autocast("cuda"), torch.inference_mode(): imgs = pipe2( prompt, negative_prompt=negative_prompt, height=height, width=width, num_images_per_prompt=num_samples, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator ).images for img in imgs: return img # Input from user in_prompt = Textbox(label="Enter a prompt:") # Output response out_response = Image(label="Generated image:") # Gradio interface to generate UI link iface = gr.Interface( fn=generate_query_response, inputs=in_prompt, outputs=out_response) # Launch the interface to generate UI iface.launch()