File size: 5,190 Bytes
1a57d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#-------------------------------------libraries ----------------------------------

import os
import pandas as pd
import streamlit as st
import plotly.graph_objs as go
import numpy as np
import plotly.express as px 
import logging
# Set up logging basic configuration
logging.basicConfig(level=logging.INFO)
# Example of logging
logging.info("Streamlit app has started")


#-------------------------------------back ----------------------------------

# etherscan
## Load the data from the CSV files
dataframes = []
for filename in os.listdir('output'):
    if filename.endswith('.csv'):
        df_temp = pd.read_csv(os.path.join('output', filename), sep=';')
        dataframes.append(df_temp)
df_etherscan = pd.concat(dataframes)
del df_temp

# CMC
## Load cmc data
df_temp = pd.read_csv("output/top_100_update.csv", sep=',')
df_cmc = df_temp[df_temp["last_updated"] == df_temp["last_updated"].max()]
del df_temp
#-------------------------------------streamlit ----------------------------------

# Set the title and other page configurations
st.title('Crypto Analysis')
# Create two columns for the two plots
col1, col2 = st.columns(2)

with st.container():

    with col1:
        # etherscan
        selected_token = st.selectbox('Select Token', df_etherscan['tokenSymbol'].unique(), index=0)
        # Filter the data based on the selected token
        filtered_df = df_etherscan[df_etherscan['tokenSymbol'] == selected_token]
        # Plot the token value over time
        st.plotly_chart(
            go.Figure(
                data=[
                    go.Scatter(
                        x=filtered_df['timeStamp'],
                        y=filtered_df['value'],
                        mode='lines',
                        name='Value over time'
                    )
                ],
                layout=go.Layout(
                    title='Token Value Over Time',
                    yaxis=dict(
                        title=f'Value ({selected_token})',
                    ),
                    showlegend=True,
                    legend=go.layout.Legend(x=0, y=1.0),
                    margin=go.layout.Margin(l=40, r=0, t=40, b=30),
                    width=500,
                    height=500

                )
            )
        )

    with col2:
        # cmc
        selected_var = st.selectbox('Select Token', ["percent_change_24h","percent_change_7d","percent_change_90d"], index=0)
        # Sort the DataFrame by the 'percent_change_24h' column in ascending order
        df_sorted = df_cmc.sort_values(by=selected_var, ascending=False)
        # Select the top 10 and worst 10 rows
        top_10 = df_sorted.head(10)
        worst_10 = df_sorted.tail(10)
        # Combine the top and worst dataframes for plotting
        combined_df = pd.concat([top_10, worst_10], axis=0)
        max_abs_val = max(abs(combined_df[selected_var].min()), abs(combined_df[selected_var].max()))

        # Create a bar plot for the top 10 with a green color scale
        fig = go.Figure(data=[
            go.Bar(
                x=top_10["symbol"],
                y=top_10[selected_var],
                marker_color='rgb(0,100,0)',  # Green color for top 10
                hovertext= "Name : "+top_10["name"].astype(str)+ '<br>' +
                        selected_var + " : " + top_10["percent_tokens_circulation"].astype(str) + '<br>' +
                        'Market Cap: ' + top_10["market_cap"].astype(str) + '<br>' +
                        'Fully Diluted Market Cap: ' + top_10["fully_diluted_market_cap"].astype(str) + '<br>' +
                        'Last Updated: ' + top_10["last_updated"].astype(str),
                name="top_10"
            )
        ])

        # Add the worst 10 to the same plot with a red color scale
        fig.add_traces(go.Bar(
                x=worst_10["symbol"],
                y=worst_10[selected_var],
                marker_color='rgb(255,0,0)',  # Red color for worst 10
                hovertext="Name:"+worst_10["name"].astype(str)+ '<br>' +
                        selected_var + " : " + worst_10["percent_tokens_circulation"].astype(str) + '<br>' +
                        'Market Cap: ' + worst_10["market_cap"].astype(str) + '<br>' +
                        'Fully Diluted Market Cap: ' + worst_10["fully_diluted_market_cap"].astype(str) + '<br>' +
                        'Last Updated: ' + worst_10["last_updated"].astype(str),
                name="worst_10"
            )
        )

        # Customize aspect
        fig.update_traces(marker_line_color='rgb(8,48,107)', marker_line_width=1.5, opacity=0.8)
        fig.update_layout(title_text=f'Top 10 and Worst 10 by {selected_var.split("_")[-1]} Percentage Change')
        fig.update_xaxes(categoryorder='total ascending')
        fig.update_layout(
            autosize=False,
            width=500,
            height=500,
            margin=dict(
                l=50,
                r=50,
                b=100,
                t=100,
                pad=4
            ),
            #paper_bgcolor="LightSteelBlue",
        )
        st.plotly_chart(fig)




#-------------------------------------end ----------------------------------