Spaces:
Sleeping
Sleeping
File size: 24,473 Bytes
349c960 1a57d8f 349c960 6116805 5901908 e465733 349c960 1a57d8f 349c960 1a57d8f 349c960 1a57d8f 349c960 1a57d8f 349c960 1a57d8f 349c960 a45d429 e465733 a45d429 5901908 349c960 5901908 a45d429 5901908 349c960 5901908 a45d429 5901908 a45d429 5901908 a45d429 e465733 6116805 5901908 349c960 1a57d8f 5901908 e465733 349c960 a45d429 1a57d8f a45d429 1a57d8f a45d429 1a57d8f a45d429 1a57d8f a45d429 e465733 a45d429 e465733 a45d429 5901908 a45d429 5901908 a45d429 5901908 a45d429 5901908 a45d429 1a57d8f a45d429 5901908 1a57d8f 5901908 e465733 5901908 e465733 5901908 a45d429 1a57d8f a45d429 1a57d8f a45d429 1a57d8f 5901908 e465733 5901908 76a8b56 1a57d8f 5901908 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 |
# ------------------------ Libraries --------------------------
import os
import pandas as pd
import streamlit as st
import plotly.graph_objs as go
import logging
import subprocess
import threading
from dotenv import load_dotenv
from requests.exceptions import ConnectionError, Timeout, TooManyRedirects
import plotly.express as px
import json
import networkx as nx
import time
# ------------------------ Environment Variables --------------------------
load_dotenv()
log_folder = os.getenv("LOG_FOLDER")
# Logging
log_folder = os.getenv("LOG_STREAMLIT")
os.makedirs(log_folder, exist_ok=True)
log_file = os.path.join(log_folder, "front.log")
log_format = "%(asctime)s [%(levelname)s] - %(message)s"
logging.basicConfig(filename=log_file, level=logging.INFO, format=log_format)
logging.info("Streamlit app has started")
# Create output folder if it doesn't exist
if not os.path.exists("output"):
os.makedirs("output")
#-------------------------------------back----------------------------------
def safe_read_csv(file_path, sep=','):
if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
return pd.read_csv(file_path, sep=sep)
else:
logging.warning(f"File {file_path} is empty or does not exist.")
return pd.DataFrame() # return an empty DataFrame
# etherscan
## Load the data from the CSV files
df_etherscan = pd.DataFrame()
for filename in os.listdir('output'):
if filename.endswith('.csv') and 'transactions_' in filename:
df_temp = safe_read_csv(os.path.join('output', filename), sep=',')
df_etherscan = pd.concat([df_etherscan, df_temp], ignore_index=True)
# CMC
## Load cmc data
df_cmc = safe_read_csv("output/top_100_update.csv", sep=',')
df_cmc = df_cmc[df_cmc["last_updated"] == df_cmc["last_updated"].max()]
# Global metrics about the market
def load_global_metrics():
try:
return pd.read_csv("output/global_metrics.csv")
except FileNotFoundError:
logging.warning("Global metrics file not found.")
return pd.DataFrame() # Return an empty DataFrame if file is not found
# Load influencers
def load_influencers():
try:
with open("ressources/dict_influencers_addr.json", "r") as file:
return json.load(file)
except Exception as e:
st.error(f"Error loading influencers: {e}")
return {}
# Load influencers
def load_tokens():
try:
with open("ressources/dict_tokens_addr.json", "r") as file:
return json.load(file)
except Exception as e:
st.error(f"Error loading influencers: {e}")
return {}
def create_dominance_pie_chart(df_global_metrics):
# Extract BTC and ETH dominance
btc_dominance = df_global_metrics['btc_dominance'].iloc[0]
eth_dominance = df_global_metrics['eth_dominance'].iloc[0]
# Calculate the dominance of other cryptocurrencies
others_dominance = 100 - btc_dominance - eth_dominance
#print(btc_dominance,eth_dominance,others_dominance)
# Prepare data for pie chart
dominance_data = {
'Cryptocurrency': ['BTC', 'ETH', 'Others'],
'Dominance': [btc_dominance, eth_dominance, others_dominance]
}
df_dominance = pd.DataFrame(dominance_data)
# Create a pie chart
fig = px.pie(df_dominance, values='Dominance', names='Cryptocurrency', title='Market Cap Dominance')
return fig
def display_greed_fear_index():
try:
df = pd.read_csv('output/greed_fear_index.csv')
# Prepare data for plotting
time_periods = ['One Year Ago', 'One Month Ago', 'One Week Ago', 'Previous Close', 'Now']
values = [
df['fgi_oneYearAgo_value'].iloc[0],
df['fgi_oneMonthAgo_value'].iloc[0],
df['fgi_oneWeekAgo_value'].iloc[0],
df['fgi_previousClose_value'].iloc[0],
df['fgi_now_value'].iloc[0]
]
labels = [
df['fgi_oneYearAgo_valueText'].iloc[0],
df['fgi_oneMonthAgo_valueText'].iloc[0],
df['fgi_oneWeekAgo_valueText'].iloc[0],
df['fgi_previousClose_valueText'].iloc[0],
df['fgi_now_valueText'].iloc[0]
]
# Create a Plotly figure
fig = go.Figure(data=[
go.Scatter(x=time_periods, y=values, mode='lines+markers+text', text=labels, textposition='top center')
])
# Update layout
fig.update_layout(
title='Fear and Greed Index Over Time',
xaxis_title='Time Period',
yaxis_title='Index Value',
yaxis=dict(range=[0, 100]) # Fear and Greed index ranges from 0 to 100
)
# Display the figure
st.plotly_chart(fig)
except FileNotFoundError:
st.error("Greed and Fear index data not available. Please wait for the next update cycle.")
def load_token_balances():
try:
return pd.read_csv("output/influencers_token_balances.csv")
except FileNotFoundError:
logging.warning("Token balances file not found.")
return pd.DataFrame() # Return an empty DataFrame if file is not found
def create_token_balance_bar_plot(df):
if df.empty:
return go.Figure() # Return an empty figure if there is no data
fig = px.bar(df, x="Influencer", y="Balance", color="Token", barmode="group")
fig.update_layout(
title="Token Balances of Influencers",
xaxis_title="Influencer",
yaxis_title="Token Balance",
legend_title="Token"
)
return fig
def get_top_buyers(df, token, top_n=5):
# Filter for selected token
token_df = df[df['tokenSymbol'] == token]
# Assuming 'value' column holds the amount bought and 'from' column holds the buyer's address
top_buyers = token_df.groupby('from')['value'].sum().sort_values(ascending=False).head(top_n)
return top_buyers.reset_index()
def plot_top_buyers(df):
fig = px.bar(df, x='from', y='value', title=f'Top 5 Buyers of {selected_token}',orientation="h")
fig.update_layout(xaxis_title="Address", yaxis_title="Total Amount Bought")
return fig
def load_influencer_interactions(influencer_name):
try:
# Load the influencer addresses dictionary
with open("ressources/dict_influencers_addr.json", "r") as file:
influencers = json.load(file)
# Get the address of the specified influencer
influencer_address = influencers.get(influencer_name, None)
if influencer_address is None:
return pd.DataFrame(), None
file_path = f"output/interactions_{influencer_name}.csv"
df = pd.read_csv(file_path)
# Keep only the 'from', 'to', and 'value' columns and remove duplicates
df = df[['from', 'to', 'value']].drop_duplicates()
return df, influencer_address
except FileNotFoundError:
return pd.DataFrame(), None
def create_network_graph(df, influencer_name, influencer_address):
G = nx.Graph()
# Consider bidirectional interactions
df_bi = pd.concat([df.rename(columns={'from': 'to', 'to': 'from'}), df])
interaction_counts = df_bi.groupby(['from', 'to']).size().reset_index(name='count')
top_interactions = interaction_counts.sort_values('count', ascending=False).head(20)
# Add edges and nodes to the graph
for _, row in top_interactions.iterrows():
G.add_edge(row['from'], row['to'], weight=row['count'])
G.add_node(row['from'], type='sender')
G.add_node(row['to'], type='receiver')
# Node positions
pos = nx.spring_layout(G, weight='weight')
# Edge trace
edge_x = []
edge_y = []
edge_hover = []
for edge in G.edges(data=True):
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_hover.append(f'Interactions: {edge[2]["weight"]}')
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=2, color='#888'),
hoverinfo='text',
text=edge_hover,
mode='lines')
# Node trace
node_x = []
node_y = []
node_hover = []
node_size = []
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
connections = len(G.edges(node))
interaction_sum = interaction_counts[interaction_counts['from'].eq(node) | interaction_counts['to'].eq(node)]['count'].sum()
node_hover_info = f'Address: {node}<br># of connections: {connections}<br># of interactions: {interaction_sum}'
if node == influencer_address:
node_hover_info = f'Influencer: {influencer_name}<br>' + node_hover_info
node_size.append(30) # Central node size
else:
node_size.append(20) # Other nodes size
node_hover.append(node_hover_info)
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers',
hoverinfo='text',
text=node_hover,
marker=dict(
showscale=False,
color='blue',
size=node_size,
line=dict(width=2, color='black')))
# Create figure
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title=f'<br>Network graph of wallet interactions for {influencer_name}',
titlefont=dict(size=16),
showlegend=False,
hovermode='closest',
margin=dict(b=20, l=5, r=5, t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)))
return fig, top_interactions
# Function to read the last update time from a file
def read_last_update_time():
try:
with open("ressources/last_update.txt", "r") as file:
return file.read()
except FileNotFoundError:
return ""
# Initialize last_update_time using the function
st.session_state.last_update_time = read_last_update_time()
# Update Data Button with Timer Decorator
def update_data_with_timer():
# Execute the scripts in the 'utils' folder to update data
subprocess.call(["python", "utils/scrap_etherscan.py"])
subprocess.call(["python", "utils/scrap_cmc.py"])
subprocess.call(["python", "utils/scrap_influencers_balance.py"])
subprocess.call(["python", "utils/scrap_cmc_global_metrics.py"])
subprocess.call(["python", "utils/scrap_greed_fear_index.py"])
subprocess.call(["python", "utils/extract_tokens_balances.py"])
# Update the last_update_time variable
last_update_time = time.strftime("%Y-%m-%d %H:%M:%S")
st.session_state.last_update_time = last_update_time
# Write the last update time to the file
with open("ressources/last_update.txt", "w") as file:
file.write(last_update_time)
# Update Data Button with Timer Decorator
def update_interactions():
# Execute the scripts in the 'utils' folder to update data
subprocess.call(["python", "utils/extract_wallet_interactions.py"])
# Update the last_update_time variable
#-------------------------------------scheduler ----------------------------------
# # Function to execute the scraping functions
# def execute_etherscan_scraping():
# subprocess.call(["python", "utils/scrap_etherscan.py"])
# logging.info("Etherscan scraping completed")
# threading.Timer(3600, execute_etherscan_scraping).start()
# # Balancer scrapping
# def execute_influencers_scraping():
# subprocess.call(["python", "utils/scrap_influencers_balance.py"])
# logging.info("Influencers balance scraping completed")
# threading.Timer(3600, execute_influencers_scraping).start()
# # Function to execute the scraping functions
# def execute_cmc_scraping():
# subprocess.call(["python", "utils/scrap_cmc.py"])
# logging.info("CMC scraping completed")
# threading.Timer(2592000 / 9000, execute_cmc_scraping).start()
# # Function to execute the global metrics scraping
# def execute_global_metrics_scraping():
# subprocess.call(["python", "utils/scrap_cmc_global_metrics.py"])
# logging.info("Global metrics scraping completed")
# threading.Timer(2592000 / 9000, execute_influencers_scraping).start()
# def execute_greed_fear_index_scraping():
# subprocess.call(["python", "utils/scrap_greed_fear_index.py"])
# logging.info("Greed and Fear index scraping completed")
# threading.Timer(3600, execute_greed_fear_index_scraping).start()
# def execute_token_balances_scraping():
# subprocess.call(["python", "utils/extract_tokens_balances.py"])
# logging.info("Token balances scraping completed")
# threading.Timer(3600, execute_token_balances_scraping).start()
# if "initialized" not in st.session_state:
# # Start the scraping threads
# threading.Thread(target=execute_etherscan_scraping).start()
# threading.Thread(target=execute_cmc_scraping).start()
# threading.Thread(target=execute_influencers_scraping).start()
# threading.Thread(target=execute_global_metrics_scraping).start()
# threading.Thread(target=execute_greed_fear_index_scraping).start()
# threading.Thread(target=execute_token_balances_scraping).start()
# st.session_state["initialized"] = True
#-------------------------------------streamlit ----------------------------------
# Set the title and other page configurations
st.title('Crypto Analysis')
st.write("Welcome to the Crypto Analysis app. Please note that data is not updated automatically due to API plan limitations.")
# Display the last update time
st.write(f"Time of last update: {st.session_state.last_update_time}")
# Update Data Button with Timer Decorator
if st.button("Scrap new data", on_click=update_data_with_timer):
st.success("Data updated.")
st.header("Global Cryptocurrency Market Metrics")
# Create two columns for the two plots
col1, col2 = st.columns(2)
global_metrics_df = load_global_metrics()
display_greed_fear_index()
st.write(global_metrics_df)
with col1:
# Create and display the pie chart
dominance_fig = create_dominance_pie_chart(global_metrics_df)
dominance_fig.update_layout(
autosize=False,
width=300,
height=300,)
st.plotly_chart(dominance_fig)
with col2:
# cmc
selected_var = st.selectbox('Select Var', ["percent_change_24h","percent_change_7d","percent_change_90d"], index=0)
# Sort the DataFrame by the 'percent_change_24h' column in ascending order
df_sorted = df_cmc.sort_values(by=selected_var, ascending=False)
# Select the top 10 and worst 10 rows
top_10 = df_sorted.head(10)
worst_10 = df_sorted.tail(10)
# Combine the top and worst dataframes for plotting
combined_df = pd.concat([top_10, worst_10], axis=0)
max_abs_val = max(abs(combined_df[selected_var].min()), abs(combined_df[selected_var].max()))
# Create a bar plot for the top 10 with a green color scale
fig = go.Figure(data=[
go.Bar(
x=top_10["symbol"],
y=top_10[selected_var],
marker_color='rgb(0,100,0)', # Green color for top 10
hovertext= "Name : "+top_10["name"].astype(str)+ '<br>' +
selected_var + " : " + top_10["percent_tokens_circulation"].astype(str) + '<br>' +
'Market Cap: ' + top_10["market_cap"].astype(str) + '<br>' +
'Fully Diluted Market Cap: ' + top_10["fully_diluted_market_cap"].astype(str) + '<br>' +
'Last Updated: ' + top_10["last_updated"].astype(str),
name="top_10"
)
])
# Add the worst 10 to the same plot with a red color scale
fig.add_traces(go.Bar(
x=worst_10["symbol"],
y=worst_10[selected_var],
marker_color='rgb(255,0,0)', # Red color for worst 10
hovertext="Name:"+worst_10["name"].astype(str)+ '<br>' +
selected_var + " : " + worst_10["percent_tokens_circulation"].astype(str) + '<br>' +
'Market Cap: ' + worst_10["market_cap"].astype(str) + '<br>' +
'Fully Diluted Market Cap: ' + worst_10["fully_diluted_market_cap"].astype(str) + '<br>' +
'Last Updated: ' + worst_10["last_updated"].astype(str),
name="worst_10"
)
)
# Customize aspect
fig.update_traces(marker_line_color='rgb(8,48,107)', marker_line_width=1.5, opacity=0.8)
fig.update_layout(title_text=f'Top 10 and Worst 10 by {selected_var.split("_")[-1]} Percentage Change')
fig.update_xaxes(categoryorder='total ascending')
fig.update_layout(
autosize=False,
width=300,
height=300,
#paper_bgcolor="LightSteelBlue",
)
st.plotly_chart(fig)
st.header("Deep Dive into Specific Coins")
col1, col2 = st.columns(2)
tokens = load_tokens()
selected_token = st.selectbox('Select Token', df_etherscan['tokenSymbol'].unique(), index=0)
token_input = st.text_input("Add new token", placeholder="e.g., APE:0x123...ABC")
if st.button("Add Token"):
if ":" in token_input:
try:
new_token_name, new_token_addr = token_input.split(":")
tokens[new_token_name.strip()] = new_token_addr.strip()
with open("ressources/dict_tokens_addr.json", "w") as file:
json.dump(tokens, file, indent=4)
st.success(f"Token {new_token_name} added")
subprocess.call(["python", "utils/scrap_etherscan.py"])
df_etherscan = pd.DataFrame()
for filename in os.listdir('output'):
if filename.endswith('.csv') and 'transactions_' in filename:
df_temp = safe_read_csv(os.path.join('output', filename), sep=',')
df_etherscan = pd.concat([df_etherscan, df_temp], ignore_index=True)
except ValueError:
st.error("Invalid format. Please enter as 'name:address'")
else:
st.error("Please enter the influencer details as 'name:address'")
with col1:
# Filter the data based on the selected token
filtered_df = df_etherscan[df_etherscan['tokenSymbol'] == selected_token]
# Plot the token volume over time
st.plotly_chart(
go.Figure(
data=[
go.Scatter(
x=filtered_df['timeStamp'],
y=filtered_df['value'],
mode='lines',
name='Volume over time'
)
],
layout=go.Layout(
title='Token Volume Over Time',
yaxis=dict(
title=f'Volume ({selected_token})',
),
showlegend=True,
legend=go.layout.Legend(x=0, y=1.0),
margin=go.layout.Margin(l=40, r=0, t=40, b=30),
width=300,
height=300,
)
)
)
with col2:
# Processing data
top_buyers_df = get_top_buyers(df_etherscan, selected_token)
# Plotting
if not top_buyers_df.empty:
top_buyers_fig = plot_top_buyers(top_buyers_df)
top_buyers_fig.update_layout(
autosize=False,
width=300,
height=300)
st.plotly_chart(top_buyers_fig)
else:
st.write(f"No buying data available for {selected_token}")
st.header("Influencers' Token Balances")
token_balances_df = load_token_balances()
col1, col2 = st.columns(2)
influencers = load_influencers()
influencer_input = st.text_input("Add a new influencer", placeholder="e.g., alice:0x123...ABC")
if st.button("Add Influencer"):
if ":" in influencer_input:
try:
new_influencer_name, new_influencer_addr = influencer_input.split(":")
influencers[new_influencer_name.strip()] = new_influencer_addr.strip()
with open("ressources/dict_influencers_addr.json", "w") as file:
json.dump(influencers, file, indent=4)
st.success(f"Influencer {new_influencer_name} added")
subprocess.call(["python", "utils/scrap_influencers_balance.py"])
subprocess.call(["python", "utils/extract_tokens_balances.py"])
token_balances_df = load_token_balances()
except ValueError:
st.error("Invalid format. Please enter as 'name:address'")
else:
st.error("Please enter the influencer details as 'name:address'")
with col1:
if not token_balances_df.empty:
token_balance_fig = create_token_balance_bar_plot(token_balances_df)
token_balance_fig.update_layout(
autosize=False,
width=300,
height=400,)
st.plotly_chart(token_balance_fig)
else:
st.write("No token balance data available.")
with col2:
# Load Ether balances
try:
df_balances = pd.read_csv("output/influencers_balances.csv")
logging.info(f"Balances uploaded, shape of dataframe is {df_balances.shape}")
#st.write("DataFrame Loaded:", df_balances) # Debugging line
except FileNotFoundError:
st.error("Balance data not found. Please wait for the next update cycle.")
df_balances = pd.DataFrame()
# Inverting the influencers dictionary
inverted_influencers = {v.lower(): k for k, v in influencers.items()}
if not df_balances.empty:
df_balances["balance"] = df_balances["balance"].astype(float) / 1e18 # Convert Wei to Ether
df_balances = df_balances.rename(columns={"account": "address"})
# Ensure addresses are in the same format as in the inverted dictionary (e.g., lowercase)
df_balances["address"] = df_balances["address"].str.lower()
# Perform the mapping
df_balances["influencer"] = df_balances["address"].map(inverted_influencers)
#st.write("Mapped DataFrame:", df_balances) # Debugging line
fig = px.bar(df_balances, y="influencer", x="balance",orientation="h")
fig.update_layout(
title='Ether Balances of Influencers',
xaxis=dict(
title='Balance in eth',
titlefont_size=16,
tickfont_size=14,
))
fig.update_layout(
autosize=False,
width=300,
height=400,)
st.plotly_chart(fig)
else:
logging.info("DataFrame is empty")
# In the Streamlit app
st.header("Wallet Interactions Network Graph")
# Update Data Button with Timer Decorator
if st.button("Update interactions", on_click=update_interactions):
st.success("Interactions data updated.")
selected_influencer = st.selectbox("Select an Influencer", list(influencers.keys()))
# Load interactions data for the selected influencer
interactions_df, influencer_address = load_influencer_interactions(selected_influencer)
if not interactions_df.empty:
# Generate the network graph and the table of top interactions
network_fig, top_interactions = create_network_graph(interactions_df, selected_influencer, influencer_address)
# Display the network graph
st.plotly_chart(network_fig)
# Display the table of top interactions
st.subheader(f"Top Interactions for {selected_influencer}")
st.table(top_interactions)
else:
st.write(f"No wallet interaction data available for {selected_influencer}.")
st.markdown("""
<div style="text-align: center; margin-top: 20px;">
<a href="https://github.com/mohcineelharras/llama-index-docs" target="_blank" style="margin: 10px; display: inline-block;">
<img src="https://img.shields.io/badge/Repository-333?logo=github&style=for-the-badge" alt="Repository" style="vertical-align: middle;">
</a>
<a href="https://www.linkedin.com/in/mohcine-el-harras" target="_blank" style="margin: 10px; display: inline-block;">
<img src="https://img.shields.io/badge/-LinkedIn-0077B5?style=for-the-badge&logo=linkedin" alt="LinkedIn" style="vertical-align: middle;">
</a>
<a href="https://mohcineelharras.github.io" target="_blank" style="margin: 10px; display: inline-block;">
<img src="https://img.shields.io/badge/Visit-Portfolio-9cf?style=for-the-badge" alt="GitHub" style="vertical-align: middle;">
</a>
</div>
<div style="text-align: center; margin-top: 20px; color: #666; font-size: 0.85em;">
© 2023 Mohcine EL HARRAS
</div>
""", unsafe_allow_html=True)
#-------------------------------------end ----------------------------------
|