File size: 10,321 Bytes
e6e7a99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# --------------------------------libraries-----------------------------------
import streamlit as st
#import torch
import os
import logging
import sys
from llama_index.callbacks import CallbackManager, LlamaDebugHandler
from llama_index.llms import LlamaCPP
from llama_index.llms.llama_utils import messages_to_prompt, completion_to_prompt
from llama_index.embeddings import InstructorEmbedding
from llama_index import ServiceContext, VectorStoreIndex, SimpleDirectoryReader
from tqdm.notebook import tqdm
from dotenv import load_dotenv
# --------------------------------env variables-----------------------------------
# Load environment variables
load_dotenv(dotenv_path=".env")
no_proxy = os.getenv("no_proxy")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
OPENAI_API_BASE = os.getenv("OPENAI_API_BASE")
# --------------------------------cache LLM-----------------------------------
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
callback_manager = CallbackManager([llama_debug])
# LLM
@st.cache_resource
def load_llm_model():
if not os.path.exists("models"):
st.error("models directory does not exist. Please download and copy paste a model in folder models.")
os.makedirs("models")
return None #
llm = LlamaCPP(
#model_url="https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q5_K_M.gguf",
model_path="models/dolphin-2.1-mistral-7b.Q4_K_S.gguf",
temperature=0.0,
max_new_tokens=100,
context_window=1024,
generate_kwargs={},
model_kwargs={"n_gpu_layers": 20},
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
verbose=True,
)
return llm
llm = load_llm_model()
# --------------------------------cache Embedding model-----------------------------------
@st.cache_resource
def load_emb_model():
if not os.path.exists("data"):
st.error("Data directory does not exist. Please upload the data.")
os.makedirs("data")
return None #
embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base"
#model_name="hkunlp/instructor-base"
)
service_context = ServiceContext.from_defaults(embed_model=embed_model_inst, llm=llm)
documents = SimpleDirectoryReader("data").load_data()
print(f"Number of documents: {len(documents)}")
index = VectorStoreIndex.from_documents(
documents, service_context=service_context, show_progress=True)
return index.as_query_engine()
query_engine = load_emb_model()
# ------------------------------------layout----------------------------------------
with st.sidebar:
api_server_info = st.text_input("Local LLM API server", OPENAI_API_BASE ,key="openai_api_base")
st.title("π€ Llama Index π")
if st.button('Clear Memory'):
st.session_state.memory = ""
st.write("Local LLM API server in this demo is useles, we are loading local model using llama_index integration of llama cpp")
st.write("π This app allows you to chat with local LLM using api server or loaded in cache")
st.subheader("π» System Requirements: ")
st.markdown("- CPU: the faster the better ")
st.markdown("- RAM: 16 GB or higher")
st.markdown("- GPU: optional but very useful for Cuda acceleration")
st.subheader("Developer Information:")
st.write("This app is developed and maintained by **@mohcineelharras**")
# Define your app's tabs
tab1, tab2, tab3 = st.tabs(["LLM only", "LLM RAG QA with database", "One single document Q&A"])
# -----------------------------------LLM only---------------------------------------------
if 'memory' not in st.session_state:
st.session_state.memory = ""
#token_count = 0
with tab1:
st.title("π¬ LLM only")
prompt = st.text_input(
"Ask your question here",
placeholder="Who is Lionel Messi",
)
template = (
"system\n"
"You are Dolphin, a helpful AI assistant. Your responses should be based solely on the content of documents you have access to. "
"Do not provide information that is not contained in the documents. "
"If a question is asked about content not in the documents, respond with 'I do not have that information.' "
"Always respond in the same language as the question was asked. Be concise.\n"
"user\n"
"{prompt}\n"
"assistant\n"
)
if prompt:
contextual_prompt = st.session_state.memory + "\n" + prompt
formatted_prompt = template.format(prompt=contextual_prompt)
response = llm.complete(formatted_prompt,max_tokens=100, temperature=0, top_p=0.95, top_k=10)
#print(response)
text_response = response
#---------------------------------------------
# text_response = response["choices"][0]["text"]
# token_count += response["usage"]["total_tokens"]
# st.write("LLM's Response:\n", text_response)
# st.write("Token count:\n", token_count)
#---------------------------------------------
st.write("LLM's Response:\n",text_response)
st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
#st.write("Memory:\n", memory)
with open("short_memory.txt", 'w') as file:
file.write(st.session_state.memory)
# -----------------------------------LLM Q&A-------------------------------------------------
with tab2:
st.title("π¬ LLM RAG QA with database")
st.write("To consult files that are available in the database, go to https://huggingface.co/spaces/mohcineelharras/llama-index-docs-spaces/blob/main/data")
prompt = st.text_input(
"Ask your question here",
placeholder="How does the blockchain work ?",
)
if prompt:
response = query_engine.query(prompt)
st.write("Your prompt: ", prompt)
st.write("LLM's Response:\n"+ response.response)
with st.expander("Document Similarity Search"):
for i, node in enumerate(response.source_nodes):
dict_source_i = node.node.metadata
dict_source_i.update({"Text":node.node.text})
st.write("Source nΒ°"+str(i+1), dict_source_i)
st.write()
# -----------------------------------Upload File Q&A-----------------------------------------
def load_emb_uploaded_document(filename):
# You may want to add a check to prevent execution during initialization.
if 'init' in st.session_state:
embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base")
service_context = ServiceContext.from_defaults(embed_model=embed_model_inst, llm=llm)
documents = SimpleDirectoryReader(input_files=[filename]).load_data()
index = VectorStoreIndex.from_documents(
documents, service_context=service_context, show_progress=True)
return index.as_query_engine()
return None
with tab3:
st.title("π One single document Q&A with Llama Index using local open llms")
uploaded_file = st.file_uploader("Upload an File", type=("txt", "csv", "md","pdf"))
question = st.text_input(
"Ask something about the files",
placeholder="Can you give me a short summary?",
disabled=not uploaded_file,
)
if 'init' not in st.session_state:
st.session_state.init = True
if uploaded_file:
if not os.path.exists("draft_docs"):
st.error("draft_docs directory does not exist. Please download and copy paste a model in folder models.")
os.makedirs("draft_docs")
with open("draft_docs/"+uploaded_file.name, "wb") as f:
text = uploaded_file.read()
f.write(text)
text = uploaded_file.read()
# if load_emb_uploaded_document:
# load_emb_uploaded_document.clear()
#load_emb_uploaded_document.clear()
query_engine = load_emb_uploaded_document("draft_docs/"+uploaded_file.name)
st.write("File ",uploaded_file.name, "was loaded successfully")
if uploaded_file and question and api_server_info:
response = prompt = f"""Based on the context presented. Respond to the question below to the best of your ability.
\n\n{question}"""
response = query_engine.query(prompt)
st.write("### Answer")
st.write(response.response)
with st.expander("Document Similarity Search"):
#st.write(len(response.source_nodes))
for i, node in enumerate(response.source_nodes):
dict_source_i = node.node.metadata
dict_source_i.update({"Text":node.node.text})
st.write("Source nΒ°"+str(i+1), dict_source_i)
#st.write("Source nΒ°"+str(i))
#st.write("Meta Data :", node.node.metadata)
#st.write("Text :", node.node.text)
#st.write()
#print("Is File uploaded : ",uploaded_file==True, "Is question asked : ", question==True, "Is question asked : ", api_server_info==True)
st.markdown("""
<div style="text-align: center; margin-top: 20px;">
<a href="https://github.com/mohcineelharras/llama-index-docs" target="_blank" style="margin: 10px; display: inline-block;">
<img src="https://img.shields.io/badge/Repository-333?logo=github&style=for-the-badge" alt="Repository" style="vertical-align: middle;">
</a>
<a href="https://www.linkedin.com/in/mohcine-el-harras" target="_blank" style="margin: 10px; display: inline-block;">
<img src="https://img.shields.io/badge/-LinkedIn-0077B5?style=for-the-badge&logo=linkedin" alt="LinkedIn" style="vertical-align: middle;">
</a>
<a href="https://mohcineelharras.github.io" target="_blank" style="margin: 10px; display: inline-block;">
<img src="https://img.shields.io/badge/Visit-Portfolio-9cf?style=for-the-badge" alt="GitHub" style="vertical-align: middle;">
</a>
</div>
<div style="text-align: center; margin-top: 20px; color: #666; font-size: 0.85em;">
Β© 2023 Mohcine EL HARRAS
</div>
""", unsafe_allow_html=True)
# -----------------------------------end----------------------------------------- |