File size: 10,321 Bytes
e6e7a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# --------------------------------libraries-----------------------------------

import streamlit as st
#import torch
import os
import logging
import sys
from llama_index.callbacks import CallbackManager, LlamaDebugHandler
from llama_index.llms import LlamaCPP
from llama_index.llms.llama_utils import messages_to_prompt, completion_to_prompt
from llama_index.embeddings import InstructorEmbedding
from llama_index import ServiceContext, VectorStoreIndex, SimpleDirectoryReader
from tqdm.notebook import tqdm
from dotenv import load_dotenv

# --------------------------------env variables-----------------------------------

# Load environment variables
load_dotenv(dotenv_path=".env")

no_proxy = os.getenv("no_proxy")
OPENAI_API_KEY =  os.getenv("OPENAI_API_KEY")
OPENAI_API_BASE = os.getenv("OPENAI_API_BASE")

# --------------------------------cache LLM-----------------------------------

logging.basicConfig(stream=sys.stdout, level=logging.INFO)  
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
callback_manager = CallbackManager([llama_debug])
# LLM
@st.cache_resource
def load_llm_model():
    if not os.path.exists("models"):
        st.error("models directory does not exist. Please download and copy paste a model in folder models.")
        os.makedirs("models")
        return None  # 
    llm = LlamaCPP(
        #model_url="https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q5_K_M.gguf",
        model_path="models/dolphin-2.1-mistral-7b.Q4_K_S.gguf",
        temperature=0.0,
        max_new_tokens=100,
        context_window=1024,  
        generate_kwargs={},
        model_kwargs={"n_gpu_layers": 20}, 
        messages_to_prompt=messages_to_prompt,
        completion_to_prompt=completion_to_prompt,
        verbose=True,
    )
    return llm

llm = load_llm_model()

# --------------------------------cache Embedding model-----------------------------------

@st.cache_resource
def load_emb_model():
    if not os.path.exists("data"):
        st.error("Data directory does not exist. Please upload the data.")
        os.makedirs("data")
        return None  # 
    embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base"
        #model_name="hkunlp/instructor-base"
        )
    service_context = ServiceContext.from_defaults(embed_model=embed_model_inst, llm=llm)
    documents = SimpleDirectoryReader("data").load_data()
    print(f"Number of documents: {len(documents)}")
    index = VectorStoreIndex.from_documents(
        documents, service_context=service_context, show_progress=True)
    return index.as_query_engine()

query_engine = load_emb_model()

# ------------------------------------layout----------------------------------------

with st.sidebar:
    api_server_info = st.text_input("Local LLM API server", OPENAI_API_BASE ,key="openai_api_base")
    st.title("πŸ€– Llama Index πŸ“š")
    if st.button('Clear Memory'):
        st.session_state.memory = ""
    st.write("Local LLM API server in this demo is useles, we are loading local model using llama_index integration of llama cpp")
    st.write("πŸš€ This app allows you to chat with local LLM using api server or loaded in cache")
    st.subheader("πŸ’» System Requirements: ")
    st.markdown("- CPU: the faster the better ")
    st.markdown("- RAM: 16 GB or higher")
    st.markdown("- GPU: optional but very useful for Cuda acceleration")
    st.subheader("Developer Information:")
    st.write("This app is developed and maintained by **@mohcineelharras**")

# Define your app's tabs
tab1, tab2, tab3 = st.tabs(["LLM only", "LLM RAG QA with database", "One single document Q&A"])

# -----------------------------------LLM only--------------------------------------------- 
if 'memory' not in st.session_state:
    st.session_state.memory = ""
#token_count = 0
with tab1:
    st.title("πŸ’¬ LLM only")
    prompt = st.text_input(
        "Ask your question here",
        placeholder="Who is Lionel Messi",
    )
    template = (
        "system\n"
        "You are Dolphin, a helpful AI assistant. Your responses should be based solely on the content of documents you have access to. "
        "Do not provide information that is not contained in the documents. "
        "If a question is asked about content not in the documents, respond with 'I do not have that information.' "
        "Always respond in the same language as the question was asked. Be concise.\n"
        "user\n"
        "{prompt}\n"
        "assistant\n"
    )
    if prompt:
        contextual_prompt = st.session_state.memory + "\n" + prompt
        formatted_prompt = template.format(prompt=contextual_prompt)

        response = llm.complete(formatted_prompt,max_tokens=100, temperature=0, top_p=0.95, top_k=10)
        #print(response)
        text_response = response
        #---------------------------------------------
        # text_response = response["choices"][0]["text"]
        # token_count += response["usage"]["total_tokens"]
        # st.write("LLM's Response:\n", text_response)
        # st.write("Token count:\n", token_count)
        #---------------------------------------------
        st.write("LLM's Response:\n",text_response)
        st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
        #st.write("Memory:\n", memory)
        with open("short_memory.txt", 'w') as file:
            file.write(st.session_state.memory)

# -----------------------------------LLM Q&A-------------------------------------------------    

with tab2:
    st.title("πŸ’¬ LLM RAG QA with database")
    st.write("To consult files that are available in the database, go to https://huggingface.co/spaces/mohcineelharras/llama-index-docs-spaces/blob/main/data")
    prompt = st.text_input(
        "Ask your question here",
        placeholder="How does the blockchain work ?",
    )
    if prompt:
        response = query_engine.query(prompt)
        st.write("Your prompt: ", prompt)
        st.write("LLM's Response:\n"+ response.response)
        with st.expander("Document Similarity Search"):
            for i, node in enumerate(response.source_nodes):
                dict_source_i = node.node.metadata
                dict_source_i.update({"Text":node.node.text})
                st.write("Source nΒ°"+str(i+1), dict_source_i)
                st.write()

# -----------------------------------Upload File Q&A-----------------------------------------

def load_emb_uploaded_document(filename):
    # You may want to add a check to prevent execution during initialization.
    if 'init' in st.session_state:
        embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base")
        service_context = ServiceContext.from_defaults(embed_model=embed_model_inst, llm=llm)
        documents = SimpleDirectoryReader(input_files=[filename]).load_data()
        index = VectorStoreIndex.from_documents(
            documents, service_context=service_context, show_progress=True)
        return index.as_query_engine()
    return None

with tab3:
    st.title("πŸ“ One single document Q&A with Llama Index using local open llms")
    uploaded_file = st.file_uploader("Upload an File", type=("txt", "csv", "md","pdf"))
    question = st.text_input(
        "Ask something about the files",
        placeholder="Can you give me a short summary?",
        disabled=not uploaded_file,
    )

    if 'init' not in st.session_state:
        st.session_state.init = True

    if uploaded_file:
        if not os.path.exists("draft_docs"):
            st.error("draft_docs directory does not exist. Please download and copy paste a model in folder models.")
            os.makedirs("draft_docs")

        with open("draft_docs/"+uploaded_file.name, "wb") as f:
            text = uploaded_file.read()
            f.write(text)
        text = uploaded_file.read()
        # if load_emb_uploaded_document:
        #     load_emb_uploaded_document.clear()
        #load_emb_uploaded_document.clear()
        query_engine = load_emb_uploaded_document("draft_docs/"+uploaded_file.name)
        st.write("File ",uploaded_file.name, "was loaded successfully")

    if uploaded_file and question and api_server_info:
        response = prompt = f"""Based on the context presented. Respond to the question below to the best of your ability.
        \n\n{question}"""
        response = query_engine.query(prompt)
        st.write("### Answer")
        st.write(response.response)
        with st.expander("Document Similarity Search"):
            #st.write(len(response.source_nodes))
            for i, node in enumerate(response.source_nodes):
                dict_source_i = node.node.metadata
                dict_source_i.update({"Text":node.node.text})
                st.write("Source nΒ°"+str(i+1), dict_source_i)
                #st.write("Source nΒ°"+str(i))
                #st.write("Meta Data :", node.node.metadata)
                #st.write("Text :", node.node.text)
                #st.write()
    #print("Is File uploaded : ",uploaded_file==True, "Is question asked : ", question==True, "Is question asked : ", api_server_info==True)

st.markdown("""
<div style="text-align: center; margin-top: 20px;">
    <a href="https://github.com/mohcineelharras/llama-index-docs" target="_blank" style="margin: 10px; display: inline-block;">
        <img src="https://img.shields.io/badge/Repository-333?logo=github&style=for-the-badge" alt="Repository" style="vertical-align: middle;">
    </a>
    <a href="https://www.linkedin.com/in/mohcine-el-harras" target="_blank" style="margin: 10px; display: inline-block;">
        <img src="https://img.shields.io/badge/-LinkedIn-0077B5?style=for-the-badge&logo=linkedin" alt="LinkedIn" style="vertical-align: middle;">
    </a>
    <a href="https://mohcineelharras.github.io" target="_blank" style="margin: 10px; display: inline-block;">
        <img src="https://img.shields.io/badge/Visit-Portfolio-9cf?style=for-the-badge" alt="GitHub" style="vertical-align: middle;">
    </a>
</div>
<div style="text-align: center; margin-top: 20px; color: #666; font-size: 0.85em;">
    Β© 2023 Mohcine EL HARRAS
</div>
""", unsafe_allow_html=True)


# -----------------------------------end-----------------------------------------