mohcineelharras
commited on
Commit
β’
77b04d1
1
Parent(s):
e6e7a99
templates done
Browse files- README.md +2 -1
- app.py +114 -54
- data/doctest.txt +4 -2
README.md
CHANGED
@@ -9,4 +9,5 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
How to pick chunks that are pertinent ?
|
13 |
+
How to stream response word by word ?
|
app.py
CHANGED
@@ -12,6 +12,8 @@ from llama_index.embeddings import InstructorEmbedding
|
|
12 |
from llama_index import ServiceContext, VectorStoreIndex, SimpleDirectoryReader
|
13 |
from tqdm.notebook import tqdm
|
14 |
from dotenv import load_dotenv
|
|
|
|
|
15 |
|
16 |
# --------------------------------env variables-----------------------------------
|
17 |
|
@@ -22,12 +24,92 @@ no_proxy = os.getenv("no_proxy")
|
|
22 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
23 |
OPENAI_API_BASE = os.getenv("OPENAI_API_BASE")
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# --------------------------------cache LLM-----------------------------------
|
26 |
|
27 |
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
28 |
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
29 |
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
|
30 |
callback_manager = CallbackManager([llama_debug])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# LLM
|
32 |
@st.cache_resource
|
33 |
def load_llm_model():
|
@@ -40,7 +122,7 @@ def load_llm_model():
|
|
40 |
model_path="models/dolphin-2.1-mistral-7b.Q4_K_S.gguf",
|
41 |
temperature=0.0,
|
42 |
max_new_tokens=100,
|
43 |
-
context_window=
|
44 |
generate_kwargs={},
|
45 |
model_kwargs={"n_gpu_layers": 20},
|
46 |
messages_to_prompt=messages_to_prompt,
|
@@ -49,8 +131,6 @@ def load_llm_model():
|
|
49 |
)
|
50 |
return llm
|
51 |
|
52 |
-
llm = load_llm_model()
|
53 |
-
|
54 |
# --------------------------------cache Embedding model-----------------------------------
|
55 |
|
56 |
@st.cache_resource
|
@@ -62,14 +142,13 @@ def load_emb_model():
|
|
62 |
embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base"
|
63 |
#model_name="hkunlp/instructor-base"
|
64 |
)
|
65 |
-
service_context = ServiceContext.from_defaults(embed_model=embed_model_inst,
|
|
|
66 |
documents = SimpleDirectoryReader("data").load_data()
|
67 |
print(f"Number of documents: {len(documents)}")
|
68 |
index = VectorStoreIndex.from_documents(
|
69 |
documents, service_context=service_context, show_progress=True)
|
70 |
-
return index.as_query_engine()
|
71 |
-
|
72 |
-
query_engine = load_emb_model()
|
73 |
|
74 |
# ------------------------------------layout----------------------------------------
|
75 |
|
@@ -77,7 +156,7 @@ with st.sidebar:
|
|
77 |
api_server_info = st.text_input("Local LLM API server", OPENAI_API_BASE ,key="openai_api_base")
|
78 |
st.title("π€ Llama Index π")
|
79 |
if st.button('Clear Memory'):
|
80 |
-
st.session_state
|
81 |
st.write("Local LLM API server in this demo is useles, we are loading local model using llama_index integration of llama cpp")
|
82 |
st.write("π This app allows you to chat with local LLM using api server or loaded in cache")
|
83 |
st.subheader("π» System Requirements: ")
|
@@ -89,43 +168,26 @@ with st.sidebar:
|
|
89 |
|
90 |
# Define your app's tabs
|
91 |
tab1, tab2, tab3 = st.tabs(["LLM only", "LLM RAG QA with database", "One single document Q&A"])
|
92 |
-
|
93 |
-
# -----------------------------------LLM only---------------------------------------------
|
94 |
if 'memory' not in st.session_state:
|
95 |
st.session_state.memory = ""
|
96 |
-
|
|
|
|
|
|
|
|
|
97 |
with tab1:
|
98 |
st.title("π¬ LLM only")
|
99 |
prompt = st.text_input(
|
100 |
"Ask your question here",
|
101 |
-
placeholder="Who is
|
102 |
-
)
|
103 |
-
template = (
|
104 |
-
"system\n"
|
105 |
-
"You are Dolphin, a helpful AI assistant. Your responses should be based solely on the content of documents you have access to. "
|
106 |
-
"Do not provide information that is not contained in the documents. "
|
107 |
-
"If a question is asked about content not in the documents, respond with 'I do not have that information.' "
|
108 |
-
"Always respond in the same language as the question was asked. Be concise.\n"
|
109 |
-
"user\n"
|
110 |
-
"{prompt}\n"
|
111 |
-
"assistant\n"
|
112 |
)
|
113 |
if prompt:
|
114 |
contextual_prompt = st.session_state.memory + "\n" + prompt
|
115 |
-
|
116 |
-
|
117 |
-
response = llm.complete(formatted_prompt,max_tokens=100, temperature=0, top_p=0.95, top_k=10)
|
118 |
-
#print(response)
|
119 |
text_response = response
|
120 |
-
|
121 |
-
|
122 |
-
# token_count += response["usage"]["total_tokens"]
|
123 |
-
# st.write("LLM's Response:\n", text_response)
|
124 |
-
# st.write("Token count:\n", token_count)
|
125 |
-
#---------------------------------------------
|
126 |
-
st.write("LLM's Response:\n",text_response)
|
127 |
st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
|
128 |
-
#st.write("Memory:\n", memory)
|
129 |
with open("short_memory.txt", 'w') as file:
|
130 |
file.write(st.session_state.memory)
|
131 |
|
@@ -133,34 +195,30 @@ with tab1:
|
|
133 |
|
134 |
with tab2:
|
135 |
st.title("π¬ LLM RAG QA with database")
|
136 |
-
st.write("To consult files that are available in the database, go to https://huggingface.co/spaces/mohcineelharras/llama-index-docs-spaces/
|
137 |
prompt = st.text_input(
|
138 |
"Ask your question here",
|
139 |
placeholder="How does the blockchain work ?",
|
140 |
)
|
141 |
if prompt:
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
145 |
with st.expander("Document Similarity Search"):
|
146 |
for i, node in enumerate(response.source_nodes):
|
147 |
dict_source_i = node.node.metadata
|
148 |
dict_source_i.update({"Text":node.node.text})
|
149 |
st.write("Source nΒ°"+str(i+1), dict_source_i)
|
150 |
-
|
|
|
|
|
|
|
151 |
|
152 |
-
# -----------------------------------Upload File Q&A-----------------------------------------
|
153 |
|
154 |
-
|
155 |
-
# You may want to add a check to prevent execution during initialization.
|
156 |
-
if 'init' in st.session_state:
|
157 |
-
embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base")
|
158 |
-
service_context = ServiceContext.from_defaults(embed_model=embed_model_inst, llm=llm)
|
159 |
-
documents = SimpleDirectoryReader(input_files=[filename]).load_data()
|
160 |
-
index = VectorStoreIndex.from_documents(
|
161 |
-
documents, service_context=service_context, show_progress=True)
|
162 |
-
return index.as_query_engine()
|
163 |
-
return None
|
164 |
|
165 |
with tab3:
|
166 |
st.title("π One single document Q&A with Llama Index using local open llms")
|
@@ -190,11 +248,13 @@ with tab3:
|
|
190 |
st.write("File ",uploaded_file.name, "was loaded successfully")
|
191 |
|
192 |
if uploaded_file and question and api_server_info:
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
st.write("### Answer")
|
197 |
-
st.
|
|
|
|
|
198 |
with st.expander("Document Similarity Search"):
|
199 |
#st.write(len(response.source_nodes))
|
200 |
for i, node in enumerate(response.source_nodes):
|
|
|
12 |
from llama_index import ServiceContext, VectorStoreIndex, SimpleDirectoryReader
|
13 |
from tqdm.notebook import tqdm
|
14 |
from dotenv import load_dotenv
|
15 |
+
from llama_index.llms import ChatMessage, MessageRole
|
16 |
+
from llama_index.prompts import ChatPromptTemplate
|
17 |
|
18 |
# --------------------------------env variables-----------------------------------
|
19 |
|
|
|
24 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
25 |
OPENAI_API_BASE = os.getenv("OPENAI_API_BASE")
|
26 |
|
27 |
+
# Text QA Prompt
|
28 |
+
chat_text_qa_msgs = [
|
29 |
+
ChatMessage(
|
30 |
+
role=MessageRole.SYSTEM,
|
31 |
+
content=(
|
32 |
+
"You are Dolphin, a helpful AI assistant. "
|
33 |
+
"Answer questions based solely on the context provided. "
|
34 |
+
"Do not use information outside of the context. "
|
35 |
+
"Respond in the same language as the question. Be concise."
|
36 |
+
),
|
37 |
+
),
|
38 |
+
ChatMessage(
|
39 |
+
role=MessageRole.USER,
|
40 |
+
content=(
|
41 |
+
"Context information is below:\n"
|
42 |
+
"---------------------\n"
|
43 |
+
"{context_str}\n"
|
44 |
+
"---------------------\n"
|
45 |
+
"Based on this context, answer the question: {query_str}\n"
|
46 |
+
),
|
47 |
+
),
|
48 |
+
]
|
49 |
+
text_qa_template = ChatPromptTemplate(chat_text_qa_msgs)
|
50 |
+
|
51 |
+
# Refine Prompt
|
52 |
+
chat_refine_msgs = [
|
53 |
+
ChatMessage(
|
54 |
+
role=MessageRole.SYSTEM,
|
55 |
+
content=(
|
56 |
+
"You are Dolphin, focused on refining answers with additional context. "
|
57 |
+
"Use new context to refine the answer. "
|
58 |
+
"If the new context isn't useful, restate the original answer. "
|
59 |
+
"Be precise and match the language of the query."
|
60 |
+
),
|
61 |
+
),
|
62 |
+
ChatMessage(
|
63 |
+
role=MessageRole.USER,
|
64 |
+
content=(
|
65 |
+
"New context for refinement:\n"
|
66 |
+
"------------\n"
|
67 |
+
"{context_msg}\n"
|
68 |
+
"------------\n"
|
69 |
+
"Refine the original answer with this context for the question: {query_str}. "
|
70 |
+
"Original Answer: {existing_answer}"
|
71 |
+
),
|
72 |
+
),
|
73 |
+
]
|
74 |
+
|
75 |
+
refine_template = ChatPromptTemplate(chat_refine_msgs)
|
76 |
+
|
77 |
+
template = (
|
78 |
+
"system\n"
|
79 |
+
"\"You are Dolphin, a helpful AI assistant. Your responses should be based solely on the content of documents you have access to, "
|
80 |
+
"including the specific context provided below. Do not provide information that is not contained in the documents or the context. "
|
81 |
+
"If a question is asked about content not in the documents or context, respond with 'I do not have that information.' "
|
82 |
+
"Always respond in the same language as the question was asked. Be concise.\n"
|
83 |
+
"Respond to the best of your ability. Try to respond in markdown.\"\n"
|
84 |
+
"context\n"
|
85 |
+
"{context}\n"
|
86 |
+
"user\n"
|
87 |
+
"{prompt}\n"
|
88 |
+
"assistant\n"
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
# --------------------------------cache LLM-----------------------------------
|
93 |
|
94 |
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
95 |
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
96 |
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
|
97 |
callback_manager = CallbackManager([llama_debug])
|
98 |
+
|
99 |
+
#One doc embedding
|
100 |
+
def load_emb_uploaded_document(filename):
|
101 |
+
# You may want to add a check to prevent execution during initialization.
|
102 |
+
if 'init' in st.session_state:
|
103 |
+
embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base")
|
104 |
+
service_context = ServiceContext.from_defaults(embed_model=embed_model_inst, llm=llm, chunk_size_limit=500)
|
105 |
+
documents = SimpleDirectoryReader(input_files=[filename]).load_data()
|
106 |
+
index = VectorStoreIndex.from_documents(
|
107 |
+
documents, service_context=service_context, show_progress=True)
|
108 |
+
return index.as_query_engine(text_qa_template=text_qa_template, refine_template=refine_template)
|
109 |
+
return None
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
# LLM
|
114 |
@st.cache_resource
|
115 |
def load_llm_model():
|
|
|
122 |
model_path="models/dolphin-2.1-mistral-7b.Q4_K_S.gguf",
|
123 |
temperature=0.0,
|
124 |
max_new_tokens=100,
|
125 |
+
context_window=2048,
|
126 |
generate_kwargs={},
|
127 |
model_kwargs={"n_gpu_layers": 20},
|
128 |
messages_to_prompt=messages_to_prompt,
|
|
|
131 |
)
|
132 |
return llm
|
133 |
|
|
|
|
|
134 |
# --------------------------------cache Embedding model-----------------------------------
|
135 |
|
136 |
@st.cache_resource
|
|
|
142 |
embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base"
|
143 |
#model_name="hkunlp/instructor-base"
|
144 |
)
|
145 |
+
service_context = ServiceContext.from_defaults(embed_model=embed_model_inst,
|
146 |
+
llm=llm)
|
147 |
documents = SimpleDirectoryReader("data").load_data()
|
148 |
print(f"Number of documents: {len(documents)}")
|
149 |
index = VectorStoreIndex.from_documents(
|
150 |
documents, service_context=service_context, show_progress=True)
|
151 |
+
return index.as_query_engine(text_qa_template=text_qa_template, refine_template=refine_template)
|
|
|
|
|
152 |
|
153 |
# ------------------------------------layout----------------------------------------
|
154 |
|
|
|
156 |
api_server_info = st.text_input("Local LLM API server", OPENAI_API_BASE ,key="openai_api_base")
|
157 |
st.title("π€ Llama Index π")
|
158 |
if st.button('Clear Memory'):
|
159 |
+
del st.session_state["memory"]
|
160 |
st.write("Local LLM API server in this demo is useles, we are loading local model using llama_index integration of llama cpp")
|
161 |
st.write("π This app allows you to chat with local LLM using api server or loaded in cache")
|
162 |
st.subheader("π» System Requirements: ")
|
|
|
168 |
|
169 |
# Define your app's tabs
|
170 |
tab1, tab2, tab3 = st.tabs(["LLM only", "LLM RAG QA with database", "One single document Q&A"])
|
|
|
|
|
171 |
if 'memory' not in st.session_state:
|
172 |
st.session_state.memory = ""
|
173 |
+
llm = load_llm_model()
|
174 |
+
query_engine = load_emb_model()
|
175 |
+
|
176 |
+
# -----------------------------------LLM only---------------------------------------------
|
177 |
+
|
178 |
with tab1:
|
179 |
st.title("π¬ LLM only")
|
180 |
prompt = st.text_input(
|
181 |
"Ask your question here",
|
182 |
+
placeholder="Who is Mohcine",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
)
|
184 |
if prompt:
|
185 |
contextual_prompt = st.session_state.memory + "\n" + prompt
|
186 |
+
response = llm.complete(prompt,max_tokens=100, temperature=0, top_p=0.95, top_k=10)
|
|
|
|
|
|
|
187 |
text_response = response
|
188 |
+
st.write("### Answer")
|
189 |
+
st.markdown(text_response)
|
|
|
|
|
|
|
|
|
|
|
190 |
st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
|
|
|
191 |
with open("short_memory.txt", 'w') as file:
|
192 |
file.write(st.session_state.memory)
|
193 |
|
|
|
195 |
|
196 |
with tab2:
|
197 |
st.title("π¬ LLM RAG QA with database")
|
198 |
+
st.write("To consult files that are available in the database, go to https://huggingface.co/spaces/mohcineelharras/llama-index-docs-spaces/tree/main/data")
|
199 |
prompt = st.text_input(
|
200 |
"Ask your question here",
|
201 |
placeholder="How does the blockchain work ?",
|
202 |
)
|
203 |
if prompt:
|
204 |
+
contextual_prompt = st.session_state.memory + "\n" + prompt
|
205 |
+
response = query_engine.query(contextual_prompt)
|
206 |
+
text_response = response.response
|
207 |
+
st.write("### Answer")
|
208 |
+
st.markdown(text_response)
|
209 |
+
st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
|
210 |
with st.expander("Document Similarity Search"):
|
211 |
for i, node in enumerate(response.source_nodes):
|
212 |
dict_source_i = node.node.metadata
|
213 |
dict_source_i.update({"Text":node.node.text})
|
214 |
st.write("Source nΒ°"+str(i+1), dict_source_i)
|
215 |
+
break
|
216 |
+
st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
|
217 |
+
with open("short_memory.txt", 'w') as file:
|
218 |
+
file.write(st.session_state.memory)
|
219 |
|
|
|
220 |
|
221 |
+
# -----------------------------------Upload File Q&A-----------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
with tab3:
|
224 |
st.title("π One single document Q&A with Llama Index using local open llms")
|
|
|
248 |
st.write("File ",uploaded_file.name, "was loaded successfully")
|
249 |
|
250 |
if uploaded_file and question and api_server_info:
|
251 |
+
contextual_prompt = st.session_state.memory + "\n" + question
|
252 |
+
response = query_engine.query(contextual_prompt)
|
253 |
+
text_response = response.response
|
254 |
st.write("### Answer")
|
255 |
+
st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
|
256 |
+
with open("short_memory.txt", 'w') as file:
|
257 |
+
file.write(st.session_state.memory)
|
258 |
with st.expander("Document Similarity Search"):
|
259 |
#st.write(len(response.source_nodes))
|
260 |
for i, node in enumerate(response.source_nodes):
|
data/doctest.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
-
Hi my name is Mohcine
|
2 |
I am 25 years old
|
3 |
-
I am a freelancer
|
|
|
|
|
|
1 |
+
Hi my name is Mohcine
|
2 |
I am 25 years old
|
3 |
+
I am a freelancer
|
4 |
+
I am interested in crypto
|
5 |
+
I worked at EDF and Enedis
|