File size: 762 Bytes
0e7ef7b
 
 
 
 
 
 
c3220a7
 
0e7ef7b
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import gradio as gr
from transformers import pipeline

pipeline =pipeline("image-classification",model="p1atdev/siglip-tagger-test-3",trust_remote_code=True)

def predict(input_img):
    predictions = pipeline(input_img ,  threshold=0.5, #optional parameter defaults to 0
                  return_scores = False #optional parameter defaults to False
                          )
    return input_img, {p["label"]: p["score"] for p in predictions} 

gradio_app = gr.Interface(
    predict,
    inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
    outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
    title="Hot Dog? Or Not?",
)

if __name__ == "__main__":
    gradio_app.launch()