Spaces:
Sleeping
Sleeping
File size: 26,364 Bytes
0bdbfac e048c03 674b430 e048c03 20b7679 54ba470 20b7679 0860d85 674b430 0860d85 674b430 20b7679 0bdbfac 20b7679 674b430 0860d85 e048c03 674b430 e048c03 674b430 54ba470 e048c03 20b7679 0bdbfac e048c03 0bdbfac 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 0bdbfac 674b430 0860d85 674b430 0860d85 674b430 7fb1029 674b430 0860d85 7fb1029 0bdbfac 7fb1029 0bdbfac 7fb1029 0bdbfac 7fb1029 0bdbfac 7fb1029 0bdbfac 674b430 7fb1029 0860d85 674b430 0860d85 674b430 0860d85 0bdbfac 7fb1029 0bdbfac 7fb1029 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 0860d85 54ba470 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 54ba470 674b430 01ac9fe 674b430 fbe88e2 674b430 01ac9fe fbe88e2 01ac9fe 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 01ac9fe 674b430 0860d85 674b430 0860d85 fbe88e2 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 54ba470 01ac9fe 674b430 0860d85 01ac9fe 54ba470 0860d85 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 0860d85 674b430 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 |
import spacy
import nltk
nltk.download('wordnet', quiet=True)
spacy.cli.download('en_core_web_sm')
from compute_lng import compute_lng
import torch
import joblib, json
import numpy as np
import pandas as pd
import gradio as gr
from const import used_indices, name_map
from model import get_model
from options import parse_args
from transformers import T5Tokenizer
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
from sklearn.linear_model import Ridge
def process_examples(samples):
processed = []
for sample in samples:
example = [sample['sentence1']] + [str(x) for x in sample['sentence1_ling']] + sample['sentence2_ling']
processed.append(example)
return processed
args, args_list, lng_names = parse_args(ckpt='./ckpt/model_fixed.pt')
tokenizer = T5Tokenizer.from_pretrained(args.model_name)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
lng_names = [name_map[x] for x in lng_names]
examples = json.load(open('assets/examples.json'))
example_ids = [44, 148, 86, 96, 98, 62, 114, 138]
examples = [examples[i] for i in example_ids]
examples = process_examples(examples)
stats = json.load(open('assets/stats.json'))
scaler = joblib.load('assets/scaler.bin')
scale_ratio = np.load('assets/ratios.npy')
ling_collection = np.load('assets/ling_collection.npy')
ling_collection_scaled = scaler.transform(ling_collection)
model, ling_disc, sem_emb = get_model(args, tokenizer, device)
# state = torch.load(args.ckpt, map_location=torch.device('cpu'))
# model.load_state_dict(state['model'], strict=True)
# model.eval()
# ling_disc.eval()
# state = torch.load(args.sem_ckpt, map_location=torch.device('cpu'))
# sem_emb.load_state_dict(state['model'], strict=True)
# sem_emb.eval()
############# Start demo code
def round_ling(x):
is_int = stats['is_int']
mins = stats['min']
maxs = stats['max']
for i in range(len(x)):
# if is_int[i]:
# x[i] = round(x[i])
# else:
# x[i] = round(x[i], 3)
x[i] = round(x[i], 3)
return np.clip(x, mins, maxs)
def visibility(mode):
if mode == 0:
vis_group = group1
elif mode == 1:
vis_group = group2
elif mode == 2:
vis_group = group3
output = [gr.update(value=''), gr.update(value='')]
for component in components:
if component in vis_group:
output.append(gr.update(visible=True))
else:
output.append(gr.update(visible=False))
return output
def generate(sent1, ling_dict):
input_ids = tokenizer.encode(sent1, return_tensors='pt').to(device)
ling1 = scaler.transform([ling_dict['Source']])
ling2 = scaler.transform([ling_dict['Target']])
inputs = {'sentence1_input_ids': input_ids,
'sentence1_ling': torch.tensor(ling1).float().to(device),
'sentence2_ling': torch.tensor(ling2).float().to(device),
'sentence1_attention_mask': torch.ones_like(input_ids)}
preds = []
with torch.no_grad():
pred = model.infer(inputs).cpu().numpy()
pred = tokenizer.batch_decode(pred,
skip_special_tokens=True)[0]
return pred
def impute_targets():
target_values = []
for i in range(len(shared_state.target)):
if i in shared_state.active_indices:
target_values.append(shared_state.target[i])
else:
target_values.append(np.nan)
target_values = np.array(target_values)
target_values_scaled = scaler.transform([target_values])[0]
estimator = Ridge(alpha=1e3, fit_intercept=False)
imputer = IterativeImputer(estimator=estimator, imputation_order='random', max_iter=100)
combined_matrix = np.vstack([ling_collection_scaled, target_values_scaled])
interpolated_matrix = imputer.fit_transform(combined_matrix)
interpolated_vector = interpolated_matrix[-1]
interp_raw = scaler.inverse_transform([interpolated_vector])[0]
shared_state.target = round_ling(interp_raw).tolist()
return shared_state.target
def generate_with_feedback(sent1, approx):
if sent1 == '':
raise gr.Error('Please input a source text.')
# First impute any inactive targets
if len(shared_state.active_indices) < len(shared_state.target):
impute_targets()
input_ids = tokenizer.encode(sent1, return_tensors='pt').to(device)
ling2 = torch.tensor(scaler.transform([shared_state.target])).float().to(device)
inputs = {
'sentence1_input_ids': input_ids,
'sentence2_ling': ling2,
'sentence1_attention_mask': torch.ones_like(input_ids)
}
print('generating...')
pred, (pred_text, interpolations) = model.infer_with_feedback_BP(ling_disc, sem_emb, inputs, tokenizer)
interpolation = '-- ' + '\n-- '.join(interpolations)
# Return both the generation results and the updated slider values
return [pred_text, interpolation] + [gr.update(value=val) for val in shared_state.target]
def generate_random(sent1, count, approx):
if sent1 == '':
raise gr.Error('Please input a source text.')
preds, interpolations = [], []
orig_active_indices = shared_state.active_indices
shared_state.active_indices = set(range(len(lng_names)))
for c in range(count):
idx = np.random.randint(0, len(ling_collection))
ling_ex = ling_collection[idx]
shared_state.target = ling_ex.copy()
success = False
patience = 0
while not success:
print(c, patience)
pred, interpolation = generate_with_feedback(sent1, approx)[:2]
print(pred)
if pred not in preds:
success = True
elif patience < 10:
patience += 1
if np.random.rand() < 0.5:
for _ in range(patience):
add_to_target()
else:
for _ in range(patience):
subtract_from_target()
else:
idx = np.random.randint(0, len(ling_collection))
ling_ex = ling_collection[idx]
shared_state.target = ling_ex.copy()
patience = 0
preds.append(pred)
interpolations.append(interpolation)
shared_state.active_indices = orig_active_indices
return '\n***\n'.join(preds), '\n***\n'.join(interpolations)
def estimate_gen(sent1, sent2, approx):
if 'approximate' in approx:
input_ids = tokenizer.encode(sent2, return_tensors='pt').to(device)
with torch.no_grad():
ling_pred = ling_disc(input_ids=input_ids).cpu().numpy()
ling_pred = scaler.inverse_transform(ling_pred)[0]
elif 'exact' in approx:
ling_pred = np.array(compute_lng(sent2))[used_indices]
else:
raise ValueError()
ling_pred = round_ling(ling_pred)
shared_state.target = ling_pred.copy()
orig_active_indices = shared_state.active_indices
shared_state.active_indices = set(range(len(lng_names)))
gen = generate_with_feedback(sent1, approx)[:2]
shared_state.active_indices = orig_active_indices
return gen + [gr.update(value=val) for val in shared_state.target]
def estimate_tgt(sent2, ling_dict, approx):
if 'approximate' in approx:
input_ids = tokenizer.encode(sent2, return_tensors='pt').to(device)
with torch.no_grad():
ling_pred = ling_disc(input_ids=input_ids).cpu().numpy()
ling_pred = scaler.inverse_transform(ling_pred)[0]
elif 'exact' in approx:
ling_pred = np.array(compute_lng(sent2))[used_indices]
else:
raise ValueError()
ling_pred = round_ling(ling_pred)
ling_dict['Target'] = ling_pred
return ling_dict
def estimate_src(sent1, ling_dict, approx):
if 'approximate' in approx:
input_ids = tokenizer.encode(sent1, return_tensors='pt').to(device)
with torch.no_grad():
ling_pred = ling_disc(input_ids=input_ids).cpu().numpy()
ling_pred = scaler.inverse_transform(ling_pred)[0]
elif 'exact' in approx:
ling_pred = np.array(compute_lng(sent1))[used_indices]
else:
raise ValueError()
ling_dict['Source'] = ling_pred
return ling_dict
def rand_ex_target():
idx = np.random.randint(0, len(ling_collection))
ling_ex = ling_collection[idx]
shared_state.target = ling_ex.copy()
return [gr.update(value=val) for val in shared_state.target]
def copy_source_to_target():
if "" in shared_state.source:
raise gr.Error("Source linguistic features not initialized. Please estimate them first.")
shared_state.target = shared_state.source.copy()
return [gr.update(value=val) for val in shared_state.target]
def add_to_target():
if not shared_state.active_indices:
raise gr.Error("No features are activated. Please activate features to modify.")
scale_stepsize = np.random.uniform(1.0, 5.0)
new_targets = np.array(shared_state.target)
for i in shared_state.active_indices:
new_targets[i] += scale_stepsize * scale_ratio[i]
shared_state.target = round_ling(new_targets).tolist()
return [gr.update(value=val) for val in shared_state.target]
def subtract_from_target():
if not shared_state.active_indices:
raise gr.Error("No features are activated. Please activate features to modify.")
scale_stepsize = np.random.uniform(1.0, 5.0)
new_targets = np.array(shared_state.target)
for i in shared_state.active_indices:
new_targets[i] -= scale_stepsize * scale_ratio[i]
shared_state.target = round_ling(new_targets).tolist()
return [gr.update(value=val) for val in shared_state.target]
title = """
<h1 style="text-align: center;">Controlled Paraphrase Generation with Linguistic Feature Control</h1>
<p style="font-size:1.2em;">This system utilizes an encoder-decoder model to generate text with controlled complexity, guided by 40 linguistic complexity indices.
The model can generate diverse paraphrases of a given sentence, each adjusted to maintain consistent meaning while varying
in linguistic complexity according to the desired level.</p>
<p style="font-size:1.2em;">It is important to note that not all index combinations are feasible (e.g., a sentence of "length" 5 with 10 "unique words").
To ensure high-quality outputs, our approach compares the initial generation with the target linguistic indices, and performs iterative refinement to match the closest, yet coherent
achievable set of indices for the given target.</p>
"""
guide = """
1. **Select Operation Mode**: Choose from the available modes:
- **Linguistically-diverse Paraphrase Generation**: Generate diverse paraphrases.
- **Steps**:
1. Enter the source text in the provided textbox.
2. Specify the number of paraphrases you want.
3. Click "Generate" to produce paraphrases with varying linguistic complexity.
- **Complexity-Matched Paraphrasing**: Match the complexity of the input text.
- **Steps**:
1. Enter the source text in the provided textbox.
2. Provide another sentence to extract linguistic indices.
3. Click "Generate" to produce a paraphrase matching the complexity of the given sentence.
- **Manual Linguistic Control**: Manually adjust linguistic features using sliders.
- **Steps**:
1. Enter the source text in the provided textbox.
2. Activate or deactivate features of interest using the checkboxes.
3. Use the sliders to adjust linguistic features.
4. **Use Tools**: Access additional tools under "Tools to assist in setting linguistic indices" for advanced control.
- **Impute Missing Values**: Automatically fill inactive features.
- **Random Target**: Generate a random set of linguistic indices.
- **Copy Source to Target**: Copy linguistic indices from the source to the target.
- **Add/Subtract Complexity**: Adjust the complexity of the target indices.
5. Click "Generate" to produce the output text based on the adjusted features.
"""
# Updated Advanced Options Description
advanced_options_description = """
**Advanced Options**:
- **Approximate vs. Exact Computation**: Choose between faster approximate computation or more precise exact computation of linguistic indices.
- **View Intermediate Generations**: Enable this option to see the intermediate sentences generated during the quality control process.
"""
css = """
#guide span.svelte-1w6vloh {font-size: 22px !important; font-weight: 600 !important}
#mode span.svelte-1gfkn6j {font-size: 18px !important; font-weight: 600 !important}
#mode {border: 0px; box-shadow: none}
#mode .block {padding: 0px}
#estimate textarea {border: 1px solid; border-radius: 7px}
div.gradio-container {color: black}
div.form {background: inherit}
body {
--text-sm: 12px;
--text-md: 16px;
--text-lg: 18px;
--input-text-size: 16px;
--section-text-size: 16px;
--input-background: --neutral-50;
}
.top-separator {
width: 100%;
height: 4px; /* Adjust the height for boldness */
background-color: #000; /* Adjust the color as needed */
margin-top: 20px; /* Adjust the margin as needed */
}
.bottom-separator {
width: 100%;
height: 4px; /* Adjust the height for boldness */
background-color: #000; /* Adjust the color as needed */
margin-bottom: 20px; /* Adjust the margin as needed */
}
.features-container {
border: 1px solid rgba(0, 0, 0, 0.1);
border-radius: 8px;
background: white;
}
/* Style the inner column to be scrollable */
.features-container > div > .column {
max-height: 400px;
overflow-y: scroll;
padding: 10px;
}
/* Scrollbar styles now apply to the inner column */
.features-container > div > .column::-webkit-scrollbar {
width: 8px;
}
.features-container > div > .column::-webkit-scrollbar-track {
background: #f1f1f1;
border-radius: 4px;
}
.features-container > div > .column::-webkit-scrollbar-thumb {
background: #888;
border-radius: 4px;
}
.features-container > div > .column::-webkit-scrollbar-thumb:hover {
background: #555;
}
.features-container .label-wrap span {
font-weight: 600;
font-size: 18px;
}
"""
sent1 = gr.Textbox(label='Source text')
ling_sliders = []
ling_dict = {'Source': [""] * len(lng_names), 'Target': [0] * len(lng_names)}
active_indices = []
target_sliders = []
source_values = []
active_checkboxes = []
for i in range(len(lng_names)):
source_values.append(gr.Textbox(placeholder="Not initialized",
lines=1, label="Source", interactive=False,
container=False, scale=1))
active_checkboxes.append(gr.Checkbox(label="Activate", value=False))
target_sliders.append(
gr.Slider(
minimum=stats['min'][i],
maximum=stats['max'][i],
value=stats['min'][i],
step=0.001 if not stats['is_int'][i] else 1,
label=None,
interactive=False
)
)
# Move SharedState class and instance to top
class SharedState:
def __init__(self, n_features):
self.source = [""] * n_features
self.target = [0] * n_features
self.active_indices = set()
def update_target(self, index, value):
self.target[index] = value
return self.target.copy()
def update_source(self, index, value):
self.source[index] = value
return self.source.copy()
def toggle_active(self, index, value):
if value:
self.active_indices.add(index)
else:
self.active_indices.discard(index)
return list(self.active_indices)
def get_state(self):
return {
'Source': self.source.copy(),
'Target': self.target.copy(),
'active_indices': list(self.active_indices)
}
shared_state = SharedState(len(lng_names))
with gr.Blocks(
theme=gr.themes.Default(
spacing_size=gr.themes.sizes.spacing_md,
text_size=gr.themes.sizes.text_md,
),
css=css) as demo:
# Header
gr.Image('assets/logo.png', height=100, container=False, show_download_button=False, show_fullscreen_button=False)
gr.Markdown(title)
# Guide
with gr.Accordion("π Quick Start Guide", open=False, elem_id='guide'):
gr.Markdown(guide)
with gr.Group(elem_classes='top-separator'):
pass
# Mode Selection
with gr.Group(elem_id='mode'):
mode = gr.Radio(
value='Linguistically-diverse Paraphrase Generation',
label='Operation Modes',
type="index",
choices=['π Linguistically-diverse Paraphrase Generation',
'βοΈ Complexity-Matched Paraphrasing',
'ποΈ Manual Linguistic Control'],
)
with gr.Accordion("βοΈ Advanced Options", open=False):
gr.Markdown(advanced_options_description)
approx = gr.Radio(value='Use approximate computation of linguistic indices (faster)',
choices=['Use approximate computation of linguistic indices (faster)',
'Use exact computation of linguistic indices'], container=False, show_label=False)
control_interpolation = gr.Checkbox(label='View the intermediate sentences in the interpolation of linguistic indices')
# Main Input/Output
with gr.Row():
with gr.Column():
sent1.render()
count = gr.Number(label='Number of generated sentences', value=3, precision=0, scale=1, visible=True)
sent_ling_gen = gr.Textbox(label='Copy the style of this sentence', scale=1, visible=False)
with gr.Column():
sent2 = gr.Textbox(label='Generated text')
generate_random_btn = gr.Button("Generate", variant='primary', scale=1, visible=True)
estimate_gen_btn = gr.Button("Generate", variant='primary', scale=1, visible=False)
generate_btn = gr.Button("Generate", variant='primary', visible=False)
# Linguistic Features Container
with gr.Accordion("Linguistic Features", elem_classes="features-container", open=True, visible=False) as ling_features:
with gr.Row():
select_all_btn = gr.Button("Activate All", size='sm')
unselect_all_btn = gr.Button("Deactivate All", size='sm')
for i, name in enumerate(lng_names):
with gr.Row():
feature_name = gr.Textbox(name, lines=1, label="Feature", container=False, show_label=False, interactive=False)
source_values[i].render()
active_checkboxes[i].render()
target_sliders[i].interactive = False
target_sliders[i].render()
ling_sliders.append((feature_name, source_values[i], target_sliders[i], active_checkboxes[i], i))
# Tools Accordion
with gr.Accordion("Tools to assist in the setting of linguistic indices...", open=False, visible=False) as ling_tools:
rand_ex_btn = gr.Button("Random target", size='lg', visible=False)
impute_btn = gr.Button("Impute Missing Values", size='lg', visible=False)
with gr.Row():
estimate_src_btn = gr.Button("Estimate linguistic indices of source sentence", visible=False)
copy_btn = gr.Button("Copy linguistic indices of source to target", size='lg', visible=False)
with gr.Row():
sub_btn = gr.Button('Decrease target complexity by \u03B5', visible=False)
add_btn = gr.Button('Increase target complexity by \u03B5', visible=False)
with gr.Row():
estimate_tgt_btn = gr.Button("Estimate linguistic indices of this sentence β", visible=False)
sent_ling_est = gr.Textbox(label='Text to estimate linguistic indices', scale=2, visible=False, container=False, elem_id='estimate')
interpolation = gr.Textbox(label='Quality control interpolation', visible=False, lines=5)
with gr.Group(elem_classes='bottom-separator'):
pass
# Examples
def load_example(example_text, *values):
# Split values into source, target, and active values
n = len(lng_names)
source_values = values[:n]
target_values = values[n:]
# Update shared state
shared_state.source = [float(x) for x in source_values]
shared_state.target = list(target_values)
shared_state.active_indices = set(range(n)) # Activate all indices
# Return updates for all components:
return [True] * n
gr.Examples(
examples=examples,
inputs=[sent1] + source_values + target_sliders,
outputs=active_checkboxes,
example_labels=[ex[0] for ex in examples],
fn=load_example,
run_on_click=True,
)
# Add select/unselect all handlers
def select_all():
for i in range(len(lng_names)):
shared_state.toggle_active(i, True)
return [True] * len(lng_names) + [gr.update(interactive=True)] * len(lng_names)
def unselect_all():
shared_state.active_indices.clear()
return [False] * len(lng_names) + [gr.update(interactive=False)] * len(lng_names)
select_all_btn.click(
fn=select_all,
outputs=active_checkboxes + [slider for _, _, slider, _, _ in ling_sliders]
)
unselect_all_btn.click(
fn=unselect_all,
outputs=active_checkboxes + [slider for _, _, slider, _, _ in ling_sliders]
)
def update_slider(slider_index, new_value):
shared_state.target[slider_index] = new_value
def update_checkbox(checkbox_index, new_value):
shared_state.toggle_active(checkbox_index, new_value)
return gr.update(interactive=new_value)
# Update the event bindings
for feature_name, source_value, target_slider, active_checkbox, i in ling_sliders:
target_slider.change(
fn=update_slider,
inputs=[gr.Number(i, visible=False), target_slider],
)
active_checkbox.change(
fn=update_checkbox,
inputs=[gr.Number(i, visible=False), active_checkbox],
outputs=target_slider
)
# Define groups and visibility
group1 = [generate_random_btn, count]
group2 = [estimate_gen_btn, sent_ling_gen]
group3 = [generate_btn, estimate_src_btn, impute_btn, estimate_tgt_btn, sent_ling_est,
rand_ex_btn, copy_btn, add_btn, sub_btn, ling_features, ling_tools]
components = group1 + group2 + group3
mode.change(visibility, inputs=[mode], outputs=[sent2, interpolation] + components)
control_interpolation.change(lambda v: gr.update(visible=v), inputs=[control_interpolation],
outputs=[interpolation])
def update_sliders_from_state(ling_state, slider_indices):
updates = []
for i in slider_indices:
updates.append(str(ling_state['Source'][i]))
updates.append(ling_state['Target'][i])
updates.append(gr.update(value=True))
return updates
def update_sliders_from_estimate(approx, sent_for_estimate):
if 'approximate' in approx:
input_ids = tokenizer.encode(sent_for_estimate, return_tensors='pt').to(device)
with torch.no_grad():
ling_pred = ling_disc(input_ids=input_ids).cpu().numpy()
ling_pred = scaler.inverse_transform(ling_pred)[0]
elif 'exact' in approx:
ling_pred = np.array(compute_lng(sent_for_estimate))[used_indices]
else:
raise ValueError()
ling_pred = round_ling(ling_pred)
shared_state.source = ling_pred.copy()
shared_state.target = ling_pred.copy()
# Return updates separately for each type of component
return ling_pred + [True] * len(lng_names)
def update_sliders_from_source(approx, source_sent):
if 'approximate' in approx:
input_ids = tokenizer.encode(source_sent, return_tensors='pt').to(device)
with torch.no_grad():
ling_pred = ling_disc(input_ids=input_ids).cpu().numpy()
ling_pred = scaler.inverse_transform(ling_pred)[0]
elif 'exact' in approx:
ling_pred = np.array(compute_lng(source_sent))[used_indices]
else:
raise ValueError()
ling_pred = round_ling(ling_pred)
shared_state.source = ling_pred.copy()
return [str(ling_pred[i]) for i in range(len(lng_names))]
slider_indices = [i for _, _, _, _, i in ling_sliders]
slider_updates = [elem for _, source, slider, active, _ in ling_sliders for elem in [source, slider, active]]
# Bind all the event handlers
estimate_src_btn.click(update_sliders_from_source,
inputs=[approx, sent1],
outputs=source_values)
estimate_tgt_btn.click(update_sliders_from_estimate,
inputs=[approx, sent_ling_est],
outputs=target_sliders + active_checkboxes)
estimate_gen_btn.click(
fn=estimate_gen,
inputs=[sent1, sent_ling_gen, approx],
outputs=[sent2, interpolation] + target_sliders
)
impute_btn.click(
fn=lambda: [gr.update(value=val) for val in impute_targets()],
outputs=target_sliders
)
copy_btn.click(
fn=copy_source_to_target,
outputs=target_sliders
)
generate_btn.click(
fn=generate_with_feedback,
inputs=[sent1, approx],
outputs=[sent2, interpolation] + target_sliders
)
generate_random_btn.click(
fn=generate_random,
inputs=[sent1, count, approx],
outputs=[sent2, interpolation]
)
add_btn.click(
fn=add_to_target,
outputs=target_sliders
)
sub_btn.click(
fn=subtract_from_target,
outputs=target_sliders
)
# Event handlers for the tools
rand_ex_btn.click(
fn=rand_ex_target,
outputs=target_sliders
)
copy_btn.click(
fn=copy_source_to_target,
outputs=target_sliders
)
add_btn.click(
fn=add_to_target,
outputs=target_sliders
)
sub_btn.click(
fn=subtract_from_target,
outputs=target_sliders
)
print('Finished loading')
demo.launch(share=True)
|