File size: 8,415 Bytes
b028d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import string,re,sys,os,random
from math import sqrt,log
from .anc_all_count import wordlist
# from .snli_freq import wordlist
import numpy as np

from nltk.stem import WordNetLemmatizer
from nltk import word_tokenize, pos_tag, sent_tokenize
lemmatizer = WordNetLemmatizer()
from nltk.corpus import wordnet
tag_dict = {
        "J": wordnet.ADJ,
        "N": wordnet.NOUN,
        "V": wordnet.VERB,
        "R": wordnet.ADV
        }

# Returns the keys of dictionary d sorted by their values
def sort_by_value(d):
    items=d.items()
    backitems=[ [v[1],v[0]] for v in items]
    backitems.sort()
    return [ backitems[i][1] for i in range(0,len(backitems))]

# NDW for first z words in a sample
def getndwfirstz(z,lemmalist):
    ndwfirstztype={}
    for lemma in lemmalist[:z]:
        ndwfirstztype[lemma]=1
    return len(ndwfirstztype.keys())

# NDW expected random z words, 10 trials
def getndwerz(z,lemmalist):
    ndwerz=0
    for i in range(10):
        ndwerztype={}
        erzlemmalist=random.sample(lemmalist,z)
        for lemma in erzlemmalist:
            ndwerztype[lemma]=1
        ndwerz+=len(ndwerztype.keys())
    return ndwerz/10.0

# NDW expected random sequences of z words, 10 trials
def getndwesz(z,lemmalist):
    ndwesz=0
    for i in range(10):
        ndwesztype={}
        startword=random.randint(0,len(lemmalist)-z)
        eszlemmalist=lemmalist[startword:startword+z]
        for lemma in eszlemmalist:
            ndwesztype[lemma]=1
        ndwesz+=len(ndwesztype.keys())
    return ndwesz/10.0

# MSTTR
def getmsttr(z,lemmalist):
    samples=0
    msttr=0.0
    while len(lemmalist)>=z:
        samples+=1
        msttrtype={}
        for lemma in lemmalist[:z]:
            msttrtype[lemma]=1
        msttr+=len(msttrtype.keys())/float(z)
        lemmalist=lemmalist[z:]    
    return msttr/samples

def isLetterNumber(character):
    if character in string.printable and not character in string.punctuation:
        return 1
    return 0

def isSentence(line):
    for character in line:
        if isLetterNumber(character):
            return 1
    return 0

# reads information from bnc wordlist
adjdict={}
verbdict={}
noundict={}
worddict={}
wordlist = wordlist.split('\n')
# wordlistfile=open("anc_all_count.txt","r")
# wordlist=wordlistfile.readlines()
# wordlistfile.close()
for word in wordlist:
    wordinfo=word.strip()
    if not wordinfo or "Total words" in wordinfo:
        continue
    infolist=wordinfo.split()
    lemma=infolist[1]
    pos=infolist[2]
    frequency=int(infolist[3])
    worddict[lemma]=worddict.get(lemma,0)+frequency
    if pos[0]=="J":
        adjdict[lemma]=adjdict.get(lemma,0)+frequency
    elif pos[0]=="V":
        verbdict[lemma]=verbdict.get(lemma,0)+frequency
    elif pos[0]=="N":
        noundict[lemma]=noundict.get(lemma,0)+frequency
wordranks=sort_by_value(worddict)
verbranks=sort_by_value(verbdict)


# standard can be computed as the 20-th percentile of word counts:
#    lengths = [len(word_tokenize(x)) for x in data['train']['text']]
#    standard = int(np.percentile(lengths, 20))

def lca(input_text, standard = 5):
    lemlines = sent_tokenize(input_text)
    for i in range(len(lemlines)):
        morph = pos_tag(word_tokenize(lemlines[i]))
        lemlines[i] = " ".join(["{}_{}".format(
            lemmatizer.lemmatize(word, tag_dict[tag[0]] if tag[0] in tag_dict else 'n'),
            tag)
            for word, tag in morph])

# process input file
    wordtypes={}
    wordtokens=0
    swordtypes={}
    swordtokens=0
    lextypes={}
    lextokens=0
    slextypes={}
    slextokens=0
    verbtypes={}
    verbtokens=0
    sverbtypes={}
    adjtypes={}
    adjtokens=0
    advtypes={}
    advtokens=0
    nountypes={}
    nountokens=0
    lemmaposlist=[]
    lemmalist=[]

    for lemline in lemlines:
        lemline=lemline.strip()
        lemline=lemline.lower()
        if not isSentence(lemline):
            continue
        lemmas=lemline.split()
        for lemma in lemmas:
            word=lemma.split("_")[0]
            pos=lemma.split("_")[-1]
            if (not pos in string.punctuation) and pos!="sent" and pos!="sym":
                lemmaposlist.append(lemma)
                lemmalist.append(word)  
                wordtokens+=1
                wordtypes[word]=1
                if (not word in wordranks[-2000:]) and pos!="cd":
                    swordtypes[word]=1
                    swordtokens+=1
                if pos[0]=="n":
                    lextypes[word]=1
                    nountypes[word]=1
                    lextokens+=1
                    nountokens+=1
                    if not word in wordranks[-2000:]:
                        slextypes[word]=1
                        slextokens+=1
                elif pos[0]=="j":
                    lextypes[word]=1
                    adjtypes[word]=1
                    lextokens+=1
                    adjtokens+=1
                    if not word in wordranks[-2000:]:
                        slextypes[word]=1
                        slextokens+=1
                elif pos[0]=="r" and (word in adjdict or (word[-2:]=="ly" and word[:-2] in adjdict)):
                    lextypes[word]=1
                    advtypes[word]=1
                    lextokens+=1
                    advtokens+=1
                    if not word in wordranks[-2000:]:
                        slextypes[word]=1
                        slextokens+=1
                elif pos[0]=="v" and not word in ["be","have"]:
                    verbtypes[word]=1
                    verbtokens+=1
                    lextypes[word]=1
                    lextokens+=1
                    if not word in wordranks[-2000:]:
                        sverbtypes[word]=1
                        slextypes[word]=1
                        slextokens+=1

# 1. lexical density
    ld=float(lextokens)/max(wordtokens, 1)

# 2. lexical sophistication
# 2.1 lexical sophistication
    ls1=slextokens/max(1,float(lextokens))
    ls2=len(swordtypes.keys())/max(float(len(wordtypes.keys())), 1)

# 2.2 verb sophistication
    if verbtokens == 0:
        vs1 = 0
        vs2 = 0
        cvs1 = 0
    else:
        vs1=len(sverbtypes.keys())/float(verbtokens)
        vs2=(len(sverbtypes.keys())*len(sverbtypes.keys()))/float(verbtokens)
        cvs1=len(sverbtypes.keys())/sqrt(2*verbtokens)

# 3 lexical diversity or variation

# 3.1 NDW, may adjust the values of "standard"
    ndw=ndwz=ndwerz=ndwesz=len(wordtypes.keys())
    if len(lemmalist)>=standard:
        ndwz=getndwfirstz(standard,lemmalist)
        ndwerz=getndwerz(standard,lemmalist)
        ndwesz=getndwesz(standard,lemmalist)

# 3.2 TTR
    msttr=ttr=len(wordtypes.keys())/max(float(wordtokens), 1)
    if len(lemmalist)>=standard:
        msttr=getmsttr(standard,lemmalist)
    cttr=len(wordtypes.keys())/max(sqrt(2*wordtokens), 1)
    rttr=len(wordtypes.keys())/max(sqrt(wordtokens), 1)
    logttr=log(len(wordtypes.keys()))/log(wordtokens) if wordtokens > 1 else 0
    if wordtokens == len(wordtypes.keys()):
        uber = 0
    else:
        uber=(log(wordtokens,10)*log(wordtokens,10))/log(wordtokens/float(len(wordtypes.keys())),10)

# 3.3 verb diversity
    if verbtokens == 0:
        vv1, svv1, cvv1 = 0, 0, 0
    else:
        vv1=len(verbtypes.keys())/float(verbtokens)
        svv1=len(verbtypes.keys())*len(verbtypes.keys())/float(verbtokens)
        cvv1=len(verbtypes.keys())/sqrt(2*verbtokens)

# 3.4 lexical diversity
    lv=len(lextypes.keys())/max(1,float(lextokens))
    vv2=len(verbtypes.keys())/max(1,float(lextokens))
    nv=len(nountypes.keys())/max(1,float(nountokens))
    adjv=len(adjtypes.keys())/max(1,float(lextokens))
    advv=len(advtypes.keys())/max(1,float(lextokens))
    modv=(len(advtypes.keys())+len(adjtypes.keys()))/max(1,float(lextokens))


    output = [len(wordtypes.keys()), len(swordtypes.keys()), len(lextypes.keys()),
            len(slextypes.keys()),
            wordtokens, swordtokens, lextokens, slextokens,
            ld, ls1, ls2, vs1, vs2, cvs1, ndw, ndwz, ndwerz, ndwesz, ttr, msttr, cttr,
            rttr, logttr, uber, lv, vv1, svv1, cvv1, vv2, nv, adjv, advv, modv]
    return output