LingConv / app.py
mohdelgaar's picture
restore args json
1248d55
raw
history blame
26.1 kB
import spacy
import nltk
nltk.download('wordnet', quiet=True)
spacy.cli.download('en_core_web_sm')
from compute_lng import compute_lng
import torch
import joblib, json
import numpy as np
import pandas as pd
import gradio as gr
from const import used_indices, name_map
from model import get_model
from options import parse_args
from transformers import T5Tokenizer
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
from sklearn.linear_model import Ridge
def process_examples(samples):
processed = []
for sample in samples:
example = [sample['sentence1']] + [str(x) for x in sample['sentence1_ling']] + sample['sentence2_ling']
processed.append(example)
return processed
args, args_list, lng_names = parse_args(ckpt='./ckpt/model.pt')
tokenizer = T5Tokenizer.from_pretrained(args.model_name)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
lng_names = [name_map[x] for x in lng_names]
examples = json.load(open('assets/examples.json'))
example_ids = [44, 148, 86, 96, 98, 62, 114, 138]
examples = [examples[i] for i in example_ids]
examples = process_examples(examples)
stats = json.load(open('assets/stats.json'))
scaler = joblib.load('assets/scaler.bin')
scale_ratio = np.load('assets/ratios.npy')
ling_collection = np.load('assets/ling_collection.npy')
ling_collection_scaled = scaler.transform(ling_collection)
model, ling_disc, sem_emb = get_model(args, tokenizer, device)
############# Start demo code
def round_ling(x):
is_int = stats['is_int']
mins = stats['min']
maxs = stats['max']
for i in range(len(x)):
# if is_int[i]:
# x[i] = round(x[i])
# else:
# x[i] = round(x[i], 3)
x[i] = round(x[i], 3)
return np.clip(x, mins, maxs)
def visibility(mode):
if mode == 0:
vis_group = group1
elif mode == 1:
vis_group = group2
elif mode == 2:
vis_group = group3
output = [gr.update(value=''), gr.update(value='')]
for component in components:
if component in vis_group:
output.append(gr.update(visible=True))
else:
output.append(gr.update(visible=False))
return output
def generate(sent1, ling_dict):
input_ids = tokenizer.encode(sent1, return_tensors='pt').to(device)
ling1 = scaler.transform([ling_dict['Source']])
ling2 = scaler.transform([ling_dict['Target']])
inputs = {'sentence1_input_ids': input_ids,
'sentence1_ling': torch.tensor(ling1).float().to(device),
'sentence2_ling': torch.tensor(ling2).float().to(device),
'sentence1_attention_mask': torch.ones_like(input_ids)}
preds = []
with torch.no_grad():
pred = model.infer(inputs).cpu().numpy()
pred = tokenizer.batch_decode(pred,
skip_special_tokens=True)[0]
return pred
def impute_targets():
target_values = []
for i in range(len(shared_state.target)):
if i in shared_state.active_indices:
target_values.append(shared_state.target[i])
else:
target_values.append(np.nan)
target_values = np.array(target_values)
target_values_scaled = scaler.transform([target_values])[0]
estimator = Ridge(alpha=1e3, fit_intercept=False)
imputer = IterativeImputer(estimator=estimator, imputation_order='random', max_iter=100)
combined_matrix = np.vstack([ling_collection_scaled, target_values_scaled])
interpolated_matrix = imputer.fit_transform(combined_matrix)
interpolated_vector = interpolated_matrix[-1]
interp_raw = scaler.inverse_transform([interpolated_vector])[0]
shared_state.target = round_ling(interp_raw).tolist()
return shared_state.target
def generate_with_feedback(sent1, approx):
if sent1 == '':
raise gr.Error('Please input a source text.')
# First impute any inactive targets
if len(shared_state.active_indices) < len(shared_state.target):
impute_targets()
input_ids = tokenizer.encode(sent1, return_tensors='pt').to(device)
ling2 = torch.tensor(scaler.transform([shared_state.target])).float().to(device)
inputs = {
'sentence1_input_ids': input_ids,
'sentence2_ling': ling2,
'sentence1_attention_mask': torch.ones_like(input_ids)
}
print('generating...')
pred, (pred_text, interpolations) = model.infer_with_feedback_BP(ling_disc, sem_emb, inputs, tokenizer)
interpolation = '-- ' + '\n-- '.join(interpolations)
# Return both the generation results and the updated slider values
return [pred_text, interpolation] + [gr.update(value=val) for val in shared_state.target]
def generate_random(sent1, count, approx):
if sent1 == '':
raise gr.Error('Please input a source text.')
preds, interpolations = [], []
orig_active_indices = shared_state.active_indices
shared_state.active_indices = set(range(len(lng_names)))
for c in range(count):
idx = np.random.randint(0, len(ling_collection))
ling_ex = ling_collection[idx]
shared_state.target = ling_ex.copy()
success = False
patience = 0
while not success:
print(c, patience)
pred, interpolation = generate_with_feedback(sent1, approx)[:2]
print(pred)
if pred not in preds:
success = True
elif patience < 10:
patience += 1
if np.random.rand() < 0.5:
for _ in range(patience):
add_to_target()
else:
for _ in range(patience):
subtract_from_target()
else:
idx = np.random.randint(0, len(ling_collection))
ling_ex = ling_collection[idx]
shared_state.target = ling_ex.copy()
patience = 0
preds.append(pred)
interpolations.append(interpolation)
shared_state.active_indices = orig_active_indices
return '\n***\n'.join(preds), '\n***\n'.join(interpolations)
def estimate_gen(sent1, sent2, approx):
if 'approximate' in approx:
input_ids = tokenizer.encode(sent2, return_tensors='pt').to(device)
with torch.no_grad():
ling_pred = ling_disc(input_ids=input_ids).cpu().numpy()
ling_pred = scaler.inverse_transform(ling_pred)[0]
elif 'exact' in approx:
ling_pred = np.array(compute_lng(sent2))[used_indices]
else:
raise ValueError()
ling_pred = round_ling(ling_pred)
shared_state.target = ling_pred.copy()
orig_active_indices = shared_state.active_indices
shared_state.active_indices = set(range(len(lng_names)))
gen = generate_with_feedback(sent1, approx)[:2]
shared_state.active_indices = orig_active_indices
return gen + [gr.update(value=val) for val in shared_state.target]
def estimate_tgt(sent2, ling_dict, approx):
if 'approximate' in approx:
input_ids = tokenizer.encode(sent2, return_tensors='pt').to(device)
with torch.no_grad():
ling_pred = ling_disc(input_ids=input_ids).cpu().numpy()
ling_pred = scaler.inverse_transform(ling_pred)[0]
elif 'exact' in approx:
ling_pred = np.array(compute_lng(sent2))[used_indices]
else:
raise ValueError()
ling_pred = round_ling(ling_pred)
ling_dict['Target'] = ling_pred
return ling_dict
def estimate_src(sent1, ling_dict, approx):
if 'approximate' in approx:
input_ids = tokenizer.encode(sent1, return_tensors='pt').to(device)
with torch.no_grad():
ling_pred = ling_disc(input_ids=input_ids).cpu().numpy()
ling_pred = scaler.inverse_transform(ling_pred)[0]
elif 'exact' in approx:
ling_pred = np.array(compute_lng(sent1))[used_indices]
else:
raise ValueError()
ling_dict['Source'] = ling_pred
return ling_dict
def rand_ex_target():
idx = np.random.randint(0, len(ling_collection))
ling_ex = ling_collection[idx]
shared_state.target = ling_ex.copy()
return [gr.update(value=val) for val in shared_state.target]
def copy_source_to_target():
if "" in shared_state.source:
raise gr.Error("Source linguistic features not initialized. Please estimate them first.")
shared_state.target = shared_state.source.copy()
return [gr.update(value=val) for val in shared_state.target]
def add_to_target():
if not shared_state.active_indices:
raise gr.Error("No features are activated. Please activate features to modify.")
scale_stepsize = np.random.uniform(1.0, 5.0)
new_targets = np.array(shared_state.target)
for i in shared_state.active_indices:
new_targets[i] += scale_stepsize * scale_ratio[i]
shared_state.target = round_ling(new_targets).tolist()
return [gr.update(value=val) for val in shared_state.target]
def subtract_from_target():
if not shared_state.active_indices:
raise gr.Error("No features are activated. Please activate features to modify.")
scale_stepsize = np.random.uniform(1.0, 5.0)
new_targets = np.array(shared_state.target)
for i in shared_state.active_indices:
new_targets[i] -= scale_stepsize * scale_ratio[i]
shared_state.target = round_ling(new_targets).tolist()
return [gr.update(value=val) for val in shared_state.target]
title = """
<h1 style="text-align: center;">Controlled Paraphrase Generation with Linguistic Feature Control</h1>
<p style="font-size:1.2em;">This system utilizes an encoder-decoder model to generate text with controlled complexity, guided by 40 linguistic complexity indices.
The model can generate diverse paraphrases of a given sentence, each adjusted to maintain consistent meaning while varying
in linguistic complexity according to the desired level.</p>
<p style="font-size:1.2em;">It is important to note that not all index combinations are feasible (e.g., a sentence of "length" 5 with 10 "unique words").
To ensure high-quality outputs, our approach compares the initial generation with the target linguistic indices, and performs iterative refinement to match the closest, yet coherent
achievable set of indices for the given target.</p>
"""
guide = """
1. **Select Operation Mode**: Choose from the available modes:
- **Linguistically-diverse Paraphrase Generation**: Generate diverse paraphrases.
- **Steps**:
1. Enter the source text in the provided textbox.
2. Specify the number of paraphrases you want.
3. Click "Generate" to produce paraphrases with varying linguistic complexity.
- **Complexity-Matched Paraphrasing**: Match the complexity of the input text.
- **Steps**:
1. Enter the source text in the provided textbox.
2. Provide another sentence to extract linguistic indices.
3. Click "Generate" to produce a paraphrase matching the complexity of the given sentence.
- **Manual Linguistic Control**: Manually adjust linguistic features using sliders.
- **Steps**:
1. Enter the source text in the provided textbox.
2. Activate or deactivate features of interest using the checkboxes.
3. Use the sliders to adjust linguistic features.
4. **Use Tools**: Access additional tools under "Tools to assist in setting linguistic indices" for advanced control.
- **Impute Missing Values**: Automatically fill inactive features.
- **Random Target**: Generate a random set of linguistic indices.
- **Copy Source to Target**: Copy linguistic indices from the source to the target.
- **Add/Subtract Complexity**: Adjust the complexity of the target indices.
5. Click "Generate" to produce the output text based on the adjusted features.
"""
# Updated Advanced Options Description
advanced_options_description = """
**Advanced Options**:
- **Approximate vs. Exact Computation**: Choose between faster approximate computation or more precise exact computation of linguistic indices.
- **View Intermediate Generations**: Enable this option to see the intermediate sentences generated during the quality control process.
"""
css = """
#guide span.svelte-1w6vloh {font-size: 22px !important; font-weight: 600 !important}
#mode span.svelte-1gfkn6j {font-size: 18px !important; font-weight: 600 !important}
#mode {border: 0px; box-shadow: none}
#mode .block {padding: 0px}
#estimate textarea {border: 1px solid; border-radius: 7px}
div.gradio-container {color: black}
div.form {background: inherit}
body {
--text-sm: 12px;
--text-md: 16px;
--text-lg: 18px;
--input-text-size: 16px;
--section-text-size: 16px;
--input-background: --neutral-50;
}
.top-separator {
width: 100%;
height: 4px; /* Adjust the height for boldness */
background-color: #000; /* Adjust the color as needed */
margin-top: 20px; /* Adjust the margin as needed */
}
.bottom-separator {
width: 100%;
height: 4px; /* Adjust the height for boldness */
background-color: #000; /* Adjust the color as needed */
margin-bottom: 20px; /* Adjust the margin as needed */
}
.features-container {
border: 1px solid rgba(0, 0, 0, 0.1);
border-radius: 8px;
background: white;
}
/* Style the inner column to be scrollable */
.features-container > div > .column {
max-height: 400px;
overflow-y: scroll;
padding: 10px;
}
/* Scrollbar styles now apply to the inner column */
.features-container > div > .column::-webkit-scrollbar {
width: 8px;
}
.features-container > div > .column::-webkit-scrollbar-track {
background: #f1f1f1;
border-radius: 4px;
}
.features-container > div > .column::-webkit-scrollbar-thumb {
background: #888;
border-radius: 4px;
}
.features-container > div > .column::-webkit-scrollbar-thumb:hover {
background: #555;
}
.features-container .label-wrap span {
font-weight: 600;
font-size: 18px;
}
"""
sent1 = gr.Textbox(label='Source text')
ling_sliders = []
ling_dict = {'Source': [""] * len(lng_names), 'Target': [0] * len(lng_names)}
active_indices = []
target_sliders = []
source_values = []
active_checkboxes = []
for i in range(len(lng_names)):
source_values.append(gr.Textbox(placeholder="Not initialized",
lines=1, label="Source", interactive=False,
container=False, scale=1))
active_checkboxes.append(gr.Checkbox(label="Activate", value=False))
target_sliders.append(
gr.Slider(
minimum=stats['min'][i],
maximum=stats['max'][i],
value=stats['min'][i],
step=0.001 if not stats['is_int'][i] else 1,
label=None,
interactive=False
)
)
# Move SharedState class and instance to top
class SharedState:
def __init__(self, n_features):
self.source = [""] * n_features
self.target = [0] * n_features
self.active_indices = set()
def update_target(self, index, value):
self.target[index] = value
return self.target.copy()
def update_source(self, index, value):
self.source[index] = value
return self.source.copy()
def toggle_active(self, index, value):
if value:
self.active_indices.add(index)
else:
self.active_indices.discard(index)
return list(self.active_indices)
def get_state(self):
return {
'Source': self.source.copy(),
'Target': self.target.copy(),
'active_indices': list(self.active_indices)
}
shared_state = SharedState(len(lng_names))
with gr.Blocks(
theme=gr.themes.Default(
spacing_size=gr.themes.sizes.spacing_md,
text_size=gr.themes.sizes.text_md,
),
css=css) as demo:
# Header
gr.Image('assets/logo.png', height=100, container=False, show_download_button=False, show_fullscreen_button=False)
gr.Markdown(title)
# Guide
with gr.Accordion("🚀 Quick Start Guide", open=False, elem_id='guide'):
gr.Markdown(guide)
with gr.Group(elem_classes='top-separator'):
pass
# Mode Selection
with gr.Group(elem_id='mode'):
mode = gr.Radio(
value='Linguistically-diverse Paraphrase Generation',
label='Operation Modes',
type="index",
choices=['🔄 Linguistically-diverse Paraphrase Generation',
'⚖️ Complexity-Matched Paraphrasing',
'🎛️ Manual Linguistic Control'],
)
with gr.Accordion("⚙️ Advanced Options", open=False):
gr.Markdown(advanced_options_description)
approx = gr.Radio(value='Use approximate computation of linguistic indices (faster)',
choices=['Use approximate computation of linguistic indices (faster)',
'Use exact computation of linguistic indices'], container=False, show_label=False)
control_interpolation = gr.Checkbox(label='View the intermediate sentences in the interpolation of linguistic indices')
# Main Input/Output
with gr.Row():
with gr.Column():
sent1.render()
count = gr.Number(label='Number of generated sentences', value=3, precision=0, scale=1, visible=True)
sent_ling_gen = gr.Textbox(label='Copy the style of this sentence', scale=1, visible=False)
with gr.Column():
sent2 = gr.Textbox(label='Generated text')
generate_random_btn = gr.Button("Generate", variant='primary', scale=1, visible=True)
estimate_gen_btn = gr.Button("Generate", variant='primary', scale=1, visible=False)
generate_btn = gr.Button("Generate", variant='primary', visible=False)
# Linguistic Features Container
with gr.Accordion("Linguistic Features", elem_classes="features-container", open=True, visible=False) as ling_features:
with gr.Row():
select_all_btn = gr.Button("Activate All", size='sm')
unselect_all_btn = gr.Button("Deactivate All", size='sm')
for i, name in enumerate(lng_names):
with gr.Row():
feature_name = gr.Textbox(name, lines=1, label="Feature", container=False, show_label=False, interactive=False)
source_values[i].render()
active_checkboxes[i].render()
target_sliders[i].interactive = False
target_sliders[i].render()
ling_sliders.append((feature_name, source_values[i], target_sliders[i], active_checkboxes[i], i))
# Tools Accordion
with gr.Accordion("Tools to assist in the setting of linguistic indices...", open=False, visible=False) as ling_tools:
rand_ex_btn = gr.Button("Random target", size='lg', visible=False)
impute_btn = gr.Button("Impute Missing Values", size='lg', visible=False)
with gr.Row():
estimate_src_btn = gr.Button("Estimate linguistic indices of source sentence", visible=False)
copy_btn = gr.Button("Copy linguistic indices of source to target", size='lg', visible=False)
with gr.Row():
sub_btn = gr.Button('Decrease target complexity by \u03B5', visible=False)
add_btn = gr.Button('Increase target complexity by \u03B5', visible=False)
with gr.Row():
estimate_tgt_btn = gr.Button("Estimate linguistic indices of this sentence →", visible=False)
sent_ling_est = gr.Textbox(label='Text to estimate linguistic indices', scale=2, visible=False, container=False, elem_id='estimate')
interpolation = gr.Textbox(label='Quality control interpolation', visible=False, lines=5)
with gr.Group(elem_classes='bottom-separator'):
pass
# Examples
def load_example(example_text, *values):
# Split values into source, target, and active values
n = len(lng_names)
source_values = values[:n]
target_values = values[n:]
# Update shared state
shared_state.source = [float(x) for x in source_values]
shared_state.target = list(target_values)
shared_state.active_indices = set(range(n)) # Activate all indices
# Return updates for all components:
return [True] * n
gr.Examples(
examples=examples,
inputs=[sent1] + source_values + target_sliders,
outputs=active_checkboxes,
example_labels=[ex[0] for ex in examples],
fn=load_example,
run_on_click=True,
)
# Add select/unselect all handlers
def select_all():
for i in range(len(lng_names)):
shared_state.toggle_active(i, True)
return [True] * len(lng_names) + [gr.update(interactive=True)] * len(lng_names)
def unselect_all():
shared_state.active_indices.clear()
return [False] * len(lng_names) + [gr.update(interactive=False)] * len(lng_names)
select_all_btn.click(
fn=select_all,
outputs=active_checkboxes + [slider for _, _, slider, _, _ in ling_sliders]
)
unselect_all_btn.click(
fn=unselect_all,
outputs=active_checkboxes + [slider for _, _, slider, _, _ in ling_sliders]
)
def update_slider(slider_index, new_value):
shared_state.target[slider_index] = new_value
def update_checkbox(checkbox_index, new_value):
shared_state.toggle_active(checkbox_index, new_value)
return gr.update(interactive=new_value)
# Update the event bindings
for feature_name, source_value, target_slider, active_checkbox, i in ling_sliders:
target_slider.change(
fn=update_slider,
inputs=[gr.Number(i, visible=False), target_slider],
)
active_checkbox.change(
fn=update_checkbox,
inputs=[gr.Number(i, visible=False), active_checkbox],
outputs=target_slider
)
# Define groups and visibility
group1 = [generate_random_btn, count]
group2 = [estimate_gen_btn, sent_ling_gen]
group3 = [generate_btn, estimate_src_btn, impute_btn, estimate_tgt_btn, sent_ling_est,
rand_ex_btn, copy_btn, add_btn, sub_btn, ling_features, ling_tools]
components = group1 + group2 + group3
mode.change(visibility, inputs=[mode], outputs=[sent2, interpolation] + components)
control_interpolation.change(lambda v: gr.update(visible=v), inputs=[control_interpolation],
outputs=[interpolation])
def update_sliders_from_state(ling_state, slider_indices):
updates = []
for i in slider_indices:
updates.append(str(ling_state['Source'][i]))
updates.append(ling_state['Target'][i])
updates.append(gr.update(value=True))
return updates
def update_sliders_from_estimate(approx, sent_for_estimate):
if 'approximate' in approx:
input_ids = tokenizer.encode(sent_for_estimate, return_tensors='pt').to(device)
with torch.no_grad():
ling_pred = ling_disc(input_ids=input_ids).cpu().numpy()
ling_pred = scaler.inverse_transform(ling_pred)[0]
elif 'exact' in approx:
ling_pred = np.array(compute_lng(sent_for_estimate))[used_indices]
else:
raise ValueError()
ling_pred = round_ling(ling_pred)
shared_state.source = ling_pred.copy()
shared_state.target = ling_pred.copy()
# Return updates separately for each type of component
return ling_pred + [True] * len(lng_names)
def update_sliders_from_source(approx, source_sent):
if 'approximate' in approx:
input_ids = tokenizer.encode(source_sent, return_tensors='pt').to(device)
with torch.no_grad():
ling_pred = ling_disc(input_ids=input_ids).cpu().numpy()
ling_pred = scaler.inverse_transform(ling_pred)[0]
elif 'exact' in approx:
ling_pred = np.array(compute_lng(source_sent))[used_indices]
else:
raise ValueError()
ling_pred = round_ling(ling_pred)
shared_state.source = ling_pred.copy()
return [str(ling_pred[i]) for i in range(len(lng_names))]
slider_indices = [i for _, _, _, _, i in ling_sliders]
slider_updates = [elem for _, source, slider, active, _ in ling_sliders for elem in [source, slider, active]]
# Bind all the event handlers
estimate_src_btn.click(update_sliders_from_source,
inputs=[approx, sent1],
outputs=source_values)
estimate_tgt_btn.click(update_sliders_from_estimate,
inputs=[approx, sent_ling_est],
outputs=target_sliders + active_checkboxes)
estimate_gen_btn.click(
fn=estimate_gen,
inputs=[sent1, sent_ling_gen, approx],
outputs=[sent2, interpolation] + target_sliders
)
impute_btn.click(
fn=lambda: [gr.update(value=val) for val in impute_targets()],
outputs=target_sliders
)
copy_btn.click(
fn=copy_source_to_target,
outputs=target_sliders
)
generate_btn.click(
fn=generate_with_feedback,
inputs=[sent1, approx],
outputs=[sent2, interpolation] + target_sliders
)
generate_random_btn.click(
fn=generate_random,
inputs=[sent1, count, approx],
outputs=[sent2, interpolation]
)
add_btn.click(
fn=add_to_target,
outputs=target_sliders
)
sub_btn.click(
fn=subtract_from_target,
outputs=target_sliders
)
# Event handlers for the tools
rand_ex_btn.click(
fn=rand_ex_target,
outputs=target_sliders
)
copy_btn.click(
fn=copy_source_to_target,
outputs=target_sliders
)
add_btn.click(
fn=add_to_target,
outputs=target_sliders
)
sub_btn.click(
fn=subtract_from_target,
outputs=target_sliders
)
print('Finished loading')
demo.launch(share=True)