Spaces:
Running
Running
import nltk | |
nltk.download('wordnet') | |
import spacy | |
spacy.cli.download('en_core_web_sm') | |
from const import name_map | |
from demo import run_gradio | |
from model import EncoderDecoderVAE | |
from options import parse_args | |
import numpy as np | |
from transformers import T5Tokenizer | |
import torch | |
import joblib | |
import pandas as pd | |
def process_examples(samples, full_names): | |
for i in range(len(samples)): | |
sample = samples[i] | |
input_text = tokenizer.decode(sample['sentence1_input_ids'], skip_special_tokens=True) | |
ling1 = scaler.inverse_transform([sample['sentence1_ling']])[0] | |
ling2 = scaler.inverse_transform([sample['sentence2_ling']])[0] | |
ling = pd.DataFrame({'Index': full_names, 'Source': ling1, 'Target': ling2}) | |
samples[i] = [input_text, ling] | |
return list(samples) | |
args, args_list, lng_names = parse_args(ckpt='./ckpt/model.pt') | |
tokenizer = T5Tokenizer.from_pretrained(args.model_name) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
scaler = joblib.load('assets/scaler.bin') | |
full_names = [name_map[x] for x in lng_names] | |
samples = joblib.load('assets/samples.bin') | |
examples = process_examples(samples, full_names) | |
ling_collection = np.load('assets/ling_collection.npy') | |
model = EncoderDecoderVAE(args, tokenizer.pad_token_id, tokenizer.get_vocab()['</s>']).to(device) | |
state = torch.load(args.ckpt, map_location=torch.device('cpu')) | |
model.load_state_dict(state['model'], strict=False) | |
model.eval() | |
run_gradio(model, tokenizer, scaler, ling_collection, examples, full_names) | |