import nltk import spacy # nltk.download('wordnet') # spacy.cli.download('en_core_web_sm') from const import name_map from demo import run_gradio from model import get_model from options import parse_args import numpy as np from transformers import T5Tokenizer import torch import joblib def process_examples(samples, full_names): for i in range(len(samples)): sample = samples[i] input_text = tokenizer.decode(sample['sentence1_input_ids'], skip_special_tokens=True) ling1 = scaler.inverse_transform([sample['sentence1_ling']])[0] ling2 = scaler.inverse_transform([sample['sentence2_ling']])[0] ling = pd.DataFrame({'Index': full_names, 'Source': ling1, 'Target': ling2}) samples[i] = [input_text, ling] return list(samples) args, args_list, lng_names = parse_args(ckpt='./ckpt/model.pt') print(args) exit() tokenizer = T5Tokenizer.from_pretrained(args.model_name) device = 'cuda' if torch.cuda.is_available() else 'cpu' full_names = [name_map[x] for x in lng_names] # samples = joblib.load('assets/samples.bin') # examples = process_examples(samples, full_names) # ling_collection = np.load('assets/ling_collection.npy') scaler = joblib.load('assets/scaler.bin') model, ling_disc, sem_emb = get_model(args, tokenizer, device) state = torch.load(args.ckpt, map_location=torch.device('cpu')) model.load_state_dict(state['model'], strict=True) model.eval() print(model is not None, ling_disc is not None, sem_emb is not None) exit() if args.disc_type == 't5': state = torch.load(args.disc_ckpt) if 'model' in state: ling_disc.load_state_dict(state['model'], strict=False) else: ling_disc.load_state_dict(state, strict=False) ling_disc.eval() state = torch.load(args.sem_ckpt) if 'model' in state: sem_emb.load_state_dict(state['model'], strict=False) else: sem_emb.load_state_dict(state, strict=False) sem_emb.eval() run_gradio(model, tokenizer, scaler, ling_collection, examples, full_names)