File size: 16,839 Bytes
6831a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import math
import torch
import einops

from backend.args import args
from backend import memory_management
from backend.misc.sub_quadratic_attention import efficient_dot_product_attention


BROKEN_XFORMERS = False
if memory_management.xformers_enabled():
    import xformers
    import xformers.ops

    try:
        x_vers = xformers.__version__
        BROKEN_XFORMERS = x_vers.startswith("0.0.2") and not x_vers.startswith("0.0.20")
    except:
        pass


FORCE_UPCAST_ATTENTION_DTYPE = memory_management.force_upcast_attention_dtype()


def get_attn_precision(attn_precision=torch.float32):
    if args.disable_attention_upcast:
        return None
    if FORCE_UPCAST_ATTENTION_DTYPE is not None:
        return FORCE_UPCAST_ATTENTION_DTYPE
    return attn_precision


def exists(val):
    return val is not None


def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
    attn_precision = get_attn_precision(attn_precision)

    if skip_reshape:
        b, _, _, dim_head = q.shape
    else:
        b, _, dim_head = q.shape
        dim_head //= heads

    scale = dim_head ** -0.5

    h = heads
    if skip_reshape:
        q, k, v = map(
            lambda t: t.reshape(b * heads, -1, dim_head),
            (q, k, v),
        )
    else:
        q, k, v = map(
            lambda t: t.unsqueeze(3)
            .reshape(b, -1, heads, dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b * heads, -1, dim_head)
            .contiguous(),
            (q, k, v),
        )

    if attn_precision == torch.float32:
        sim = torch.einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
    else:
        sim = torch.einsum('b i d, b j d -> b i j', q, k) * scale

    del q, k

    if exists(mask):
        if mask.dtype == torch.bool:
            mask = einops.rearrange(mask, 'b ... -> b (...)')
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = einops.repeat(mask, 'b j -> (b h) () j', h=h)
            sim.masked_fill_(~mask, max_neg_value)
        else:
            if len(mask.shape) == 2:
                bs = 1
            else:
                bs = mask.shape[0]
            mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
            sim.add_(mask)

    sim = sim.softmax(dim=-1)
    out = torch.einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
    out = (
        out.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
    return out


def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False):
    attn_precision = get_attn_precision(attn_precision)

    if skip_reshape:
        b, _, _, dim_head = query.shape
    else:
        b, _, dim_head = query.shape
        dim_head //= heads

    scale = dim_head ** -0.5

    if skip_reshape:
        query = query.reshape(b * heads, -1, dim_head)
        value = value.reshape(b * heads, -1, dim_head)
        key = key.reshape(b * heads, -1, dim_head).movedim(1, 2)
    else:
        query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
        value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
        key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)

    dtype = query.dtype
    upcast_attention = attn_precision == torch.float32 and query.dtype != torch.float32
    if upcast_attention:
        bytes_per_token = torch.finfo(torch.float32).bits // 8
    else:
        bytes_per_token = torch.finfo(query.dtype).bits // 8
    batch_x_heads, q_tokens, _ = query.shape
    _, _, k_tokens = key.shape
    qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens

    mem_free_total, mem_free_torch = memory_management.get_free_memory(query.device, True)

    kv_chunk_size_min = None
    kv_chunk_size = None
    query_chunk_size = None

    for x in [4096, 2048, 1024, 512, 256]:
        count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
        if count >= k_tokens:
            kv_chunk_size = k_tokens
            query_chunk_size = x
            break

    if query_chunk_size is None:
        query_chunk_size = 512

    if mask is not None:
        if len(mask.shape) == 2:
            bs = 1
        else:
            bs = mask.shape[0]
        mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])

    hidden_states = efficient_dot_product_attention(
        query,
        key,
        value,
        query_chunk_size=query_chunk_size,
        kv_chunk_size=kv_chunk_size,
        kv_chunk_size_min=kv_chunk_size_min,
        use_checkpoint=False,
        upcast_attention=upcast_attention,
        mask=mask,
    )

    hidden_states = hidden_states.to(dtype)

    hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1, 2).flatten(start_dim=2)
    return hidden_states


def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
    attn_precision = get_attn_precision(attn_precision)

    if skip_reshape:
        b, _, _, dim_head = q.shape
    else:
        b, _, dim_head = q.shape
        dim_head //= heads

    scale = dim_head ** -0.5

    h = heads
    if skip_reshape:
        q, k, v = map(
            lambda t: t.reshape(b * heads, -1, dim_head),
            (q, k, v),
        )
    else:
        q, k, v = map(
            lambda t: t.unsqueeze(3)
            .reshape(b, -1, heads, dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b * heads, -1, dim_head)
            .contiguous(),
            (q, k, v),
        )

    r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)

    mem_free_total = memory_management.get_free_memory(q.device)

    if attn_precision == torch.float32:
        element_size = 4
        upcast = True
    else:
        element_size = q.element_size()
        upcast = False

    gb = 1024 ** 3
    tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
    modifier = 3
    mem_required = tensor_size * modifier
    steps = 1

    if mem_required > mem_free_total:
        steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
        # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
        #      f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")

    if steps > 64:
        max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
        raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
                           f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')

    if mask is not None:
        if len(mask.shape) == 2:
            bs = 1
        else:
            bs = mask.shape[0]
        mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])

    # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
    first_op_done = False
    cleared_cache = False
    while True:
        try:
            slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
            for i in range(0, q.shape[1], slice_size):
                end = i + slice_size
                if upcast:
                    with torch.autocast(enabled=False, device_type='cuda'):
                        s1 = torch.einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
                else:
                    s1 = torch.einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale

                if mask is not None:
                    if len(mask.shape) == 2:
                        s1 += mask[i:end]
                    else:
                        s1 += mask[:, i:end]

                s2 = s1.softmax(dim=-1).to(v.dtype)
                del s1
                first_op_done = True

                r1[:, i:end] = torch.einsum('b i j, b j d -> b i d', s2, v)
                del s2
            break
        except memory_management.OOM_EXCEPTION as e:
            if first_op_done == False:
                memory_management.soft_empty_cache(True)
                if cleared_cache == False:
                    cleared_cache = True
                    print("out of memory error, emptying cache and trying again")
                    continue
                steps *= 2
                if steps > 64:
                    raise e
                print("out of memory error, increasing steps and trying again {}".format(steps))
            else:
                raise e

    del q, k, v

    r1 = (
        r1.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
    return r1


def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
    if skip_reshape:
        b, _, _, dim_head = q.shape
    else:
        b, _, dim_head = q.shape
        dim_head //= heads

    if BROKEN_XFORMERS and b * heads > 65535:
        return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape)

    if skip_reshape:
        q, k, v = map(
            lambda t: t.reshape(b * heads, -1, dim_head),
            (q, k, v),
        )
    else:
        q, k, v = map(
            lambda t: t.reshape(b, -1, heads, dim_head),
            (q, k, v),
        )

    if mask is not None:
        pad = 8 - q.shape[1] % 8
        mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
        mask_out[:, :, :mask.shape[-1]] = mask
        mask = mask_out[:, :, :mask.shape[-1]]

    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)

    if skip_reshape:
        out = (
            out.unsqueeze(0)
            .reshape(b, heads, -1, dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b, -1, heads * dim_head)
        )
    else:
        out = (
            out.reshape(b, -1, heads * dim_head)
        )

    return out


def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
    if skip_reshape:
        b, _, _, dim_head = q.shape
    else:
        b, _, dim_head = q.shape
        dim_head //= heads
        q, k, v = map(
            lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
            (q, k, v),
        )

    out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
    out = (
        out.transpose(1, 2).reshape(b, -1, heads * dim_head)
    )
    return out


def slice_attention_single_head_spatial(q, k, v):
    r1 = torch.zeros_like(k, device=q.device)
    scale = (int(q.shape[-1]) ** (-0.5))

    mem_free_total = memory_management.get_free_memory(q.device)

    gb = 1024 ** 3
    tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
    modifier = 3 if q.element_size() == 2 else 2.5
    mem_required = tensor_size * modifier
    steps = 1

    if mem_required > mem_free_total:
        steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))

    while True:
        try:
            slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
            for i in range(0, q.shape[1], slice_size):
                end = i + slice_size
                s1 = torch.bmm(q[:, i:end], k) * scale

                s2 = torch.nn.functional.softmax(s1, dim=2).permute(0, 2, 1)
                del s1

                r1[:, :, i:end] = torch.bmm(v, s2)
                del s2
            break
        except memory_management.OOM_EXCEPTION as e:
            memory_management.soft_empty_cache(True)
            steps *= 2
            if steps > 128:
                raise e
            print("out of memory error, increasing steps and trying again {}".format(steps))

    return r1


def normal_attention_single_head_spatial(q, k, v):
    # compute attention
    b, c, h, w = q.shape

    q = q.reshape(b, c, h * w)
    q = q.permute(0, 2, 1)  # b,hw,c
    k = k.reshape(b, c, h * w)  # b,c,hw
    v = v.reshape(b, c, h * w)

    r1 = slice_attention_single_head_spatial(q, k, v)
    h_ = r1.reshape(b, c, h, w)
    del r1
    return h_


def xformers_attention_single_head_spatial(q, k, v):
    # compute attention
    B, C, H, W = q.shape
    q, k, v = map(
        lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
        (q, k, v),
    )

    try:
        out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
        out = out.transpose(1, 2).reshape(B, C, H, W)
    except NotImplementedError as e:
        out = slice_attention_single_head_spatial(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2),
                                                  v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
    return out


def pytorch_attention_single_head_spatial(q, k, v):
    # compute attention
    B, C, H, W = q.shape
    q, k, v = map(
        lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
        (q, k, v),
    )

    try:
        out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
        out = out.transpose(2, 3).reshape(B, C, H, W)
    except memory_management.OOM_EXCEPTION as e:
        print("scaled_dot_product_attention OOMed: switched to slice attention")
        out = slice_attention_single_head_spatial(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2),
                                                  v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
    return out


if memory_management.xformers_enabled():
    print("Using xformers cross attention")
    attention_function = attention_xformers
elif memory_management.pytorch_attention_enabled():
    print("Using pytorch cross attention")
    attention_function = attention_pytorch
elif args.attention_split:
    print("Using split optimization for cross attention")
    attention_function = attention_split
else:
    print("Using sub quadratic optimization for cross attention")
    attention_function = attention_sub_quad

if memory_management.xformers_enabled_vae():
    print("Using xformers attention for VAE")
    attention_function_single_head_spatial = xformers_attention_single_head_spatial
elif memory_management.pytorch_attention_enabled():
    print("Using pytorch attention for VAE")
    attention_function_single_head_spatial = pytorch_attention_single_head_spatial
else:
    print("Using split attention for VAE")
    attention_function_single_head_spatial = normal_attention_single_head_spatial


class AttentionProcessorForge:
    def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask=None, temb=None, *args, **kwargs):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        hidden_states = attention_function(query, key, value, heads=attn.heads, mask=attention_mask)

        hidden_states = attn.to_out[0](hidden_states)
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states