File size: 9,621 Bytes
6831a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import math
import torch
import numpy as np


def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas)


def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
    if schedule == "linear":
        betas = (
                torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
        )
    elif schedule == "cosine":
        timesteps = (
                torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
        )
        alphas = timesteps / (1 + cosine_s) * np.pi / 2
        alphas = torch.cos(alphas).pow(2)
        alphas = alphas / alphas[0]
        betas = 1 - alphas[1:] / alphas[:-1]
        betas = torch.clamp(betas, min=0, max=0.999)
    elif schedule == "sqrt_linear":
        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
    elif schedule == "sqrt":
        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
    else:
        raise ValueError(f"schedule '{schedule}' unknown.")
    return betas


def time_snr_shift(alpha, t):
    if alpha == 1.0:
        return t
    return alpha * t / (1 + (alpha - 1) * t)


def flux_time_shift(mu, sigma, t):
    return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)


class AbstractPrediction(torch.nn.Module):
    def __init__(self, sigma_data=1.0, prediction_type='epsilon'):
        super().__init__()
        self.sigma_data = sigma_data
        self.prediction_type = prediction_type
        assert self.prediction_type in ['epsilon', 'const', 'v_prediction', 'edm']

    def calculate_input(self, sigma, noise):
        if self.prediction_type == 'const':
            return noise
        else:
            sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
            return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        if self.prediction_type == 'v_prediction':
            return model_input * self.sigma_data ** 2 / (
                    sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (
                    sigma ** 2 + self.sigma_data ** 2) ** 0.5
        elif self.prediction_type == 'edm':
            return model_input * self.sigma_data ** 2 / (
                    sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (
                    sigma ** 2 + self.sigma_data ** 2) ** 0.5
        else:
            return model_input - model_output * sigma

    def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
        if self.prediction_type == 'const':
            return sigma * noise + (1.0 - sigma) * latent_image
        else:
            if max_denoise:
                noise = noise * torch.sqrt(1.0 + sigma ** 2.0)
            else:
                noise = noise * sigma

            noise += latent_image
            return noise

    def inverse_noise_scaling(self, sigma, latent):
        if self.prediction_type == 'const':
            return latent / (1.0 - sigma)
        else:
            return latent


class Prediction(AbstractPrediction):
    def __init__(self, sigma_data=1.0, prediction_type='eps', beta_schedule='linear', linear_start=0.00085,
                 linear_end=0.012, timesteps=1000):
        super().__init__(sigma_data=sigma_data, prediction_type=prediction_type)
        self.register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=timesteps,
                               linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3)

    def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        if given_betas is not None:
            betas = given_betas
        else:
            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
                                       cosine_s=cosine_s)
        alphas = 1. - betas
        alphas_cumprod = torch.cumprod(alphas, dim=0)
        sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5

        self.register_buffer('alphas_cumprod', alphas_cumprod.float())
        self.register_buffer('sigmas', sigmas.float())
        self.register_buffer('log_sigmas', sigmas.log().float())
        return

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        log_sigma = sigma.log()
        dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
        return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)

    def sigma(self, timestep):
        t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1))
        low_idx = t.floor().long()
        high_idx = t.ceil().long()
        w = t.frac()
        log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
        return log_sigma.exp().to(timestep.device)

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 999999999.9
        if percent >= 1.0:
            return 0.0
        percent = 1.0 - percent
        return self.sigma(torch.tensor(percent * 999.0)).item()


class PredictionEDM(Prediction):
    def timestep(self, sigma):
        return 0.25 * sigma.log()

    def sigma(self, timestep):
        return (timestep / 0.25).exp()


class PredictionContinuousEDM(AbstractPrediction):
    def __init__(self, sigma_data=1.0, prediction_type='eps', sigma_min=0.002, sigma_max=120.0):
        super().__init__(sigma_data=sigma_data, prediction_type=prediction_type)
        self.set_parameters(sigma_min, sigma_max, sigma_data)

    def set_parameters(self, sigma_min, sigma_max, sigma_data):
        self.sigma_data = sigma_data
        sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp()

        self.register_buffer('sigmas', sigmas)
        self.register_buffer('log_sigmas', sigmas.log())

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        return 0.25 * sigma.log()

    def sigma(self, timestep):
        return (timestep / 0.25).exp()

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 999999999.9
        if percent >= 1.0:
            return 0.0
        percent = 1.0 - percent

        log_sigma_min = math.log(self.sigma_min)
        return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)


class PredictionContinuousV(PredictionContinuousEDM):
    def timestep(self, sigma):
        return sigma.atan() / math.pi * 2

    def sigma(self, timestep):
        return (timestep * math.pi / 2).tan()


class PredictionFlow(AbstractPrediction):
    def __init__(self, sigma_data=1.0, prediction_type='eps', shift=1.0, multiplier=1000, timesteps=1000):
        super().__init__(sigma_data=sigma_data, prediction_type=prediction_type)
        self.shift = shift
        self.multiplier = multiplier
        ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps) * multiplier)
        self.register_buffer('sigmas', ts)

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        return sigma * self.multiplier

    def sigma(self, timestep):
        return time_snr_shift(self.shift, timestep / self.multiplier)

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 1.0
        if percent >= 1.0:
            return 0.0
        return 1.0 - percent


class PredictionFlux(AbstractPrediction):
    def __init__(self, sigma_data=1.0, prediction_type='const', shift=1.15, timesteps=10000):
        super().__init__(sigma_data=sigma_data, prediction_type=prediction_type)
        self.shift = shift
        ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps))
        self.register_buffer('sigmas', ts)

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        return sigma

    def sigma(self, timestep):
        return flux_time_shift(self.shift, 1.0, timestep)

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 1.0
        if percent >= 1.0:
            return 0.0
        return 1.0 - percent


def k_prediction_from_diffusers_scheduler(scheduler):
    if hasattr(scheduler.config, 'prediction_type') and scheduler.config.prediction_type in ["epsilon", "v_prediction"]:
        if scheduler.config.beta_schedule == "scaled_linear":
            return Prediction(sigma_data=1.0, prediction_type=scheduler.config.prediction_type, beta_schedule='linear',
                              linear_start=scheduler.config.beta_start, linear_end=scheduler.config.beta_end,
                              timesteps=scheduler.config.num_train_timesteps)

    raise NotImplementedError(f'Failed to recognize {scheduler}')