File size: 8,289 Bytes
6831a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch
import math

from backend.attention import attention_pytorch as attention_function


activations = {
    "gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
    "relu": torch.nn.functional.relu,
}


class T5LayerNorm(torch.nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = torch.nn.Parameter(torch.empty(hidden_size))
        self.variance_epsilon = eps

    def forward(self, x):
        variance = x.pow(2).mean(-1, keepdim=True)
        x = x * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight.to(x) * x


class T5DenseActDense(torch.nn.Module):
    def __init__(self, model_dim, ff_dim, ff_activation):
        super().__init__()
        self.wi = torch.nn.Linear(model_dim, ff_dim, bias=False)
        self.wo = torch.nn.Linear(ff_dim, model_dim, bias=False)
        self.act = activations[ff_activation]

    def forward(self, x):
        x = self.act(self.wi(x))
        x = self.wo(x)
        return x


class T5DenseGatedActDense(torch.nn.Module):
    def __init__(self, model_dim, ff_dim, ff_activation):
        super().__init__()
        self.wi_0 = torch.nn.Linear(model_dim, ff_dim, bias=False)
        self.wi_1 = torch.nn.Linear(model_dim, ff_dim, bias=False)
        self.wo = torch.nn.Linear(ff_dim, model_dim, bias=False)
        self.act = activations[ff_activation]

    def forward(self, x):
        hidden_gelu = self.act(self.wi_0(x))
        hidden_linear = self.wi_1(x)
        x = hidden_gelu * hidden_linear
        x = self.wo(x)
        return x


class T5LayerFF(torch.nn.Module):
    def __init__(self, model_dim, ff_dim, ff_activation, gated_act):
        super().__init__()
        if gated_act:
            self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, ff_activation)
        else:
            self.DenseReluDense = T5DenseActDense(model_dim, ff_dim, ff_activation)

        self.layer_norm = T5LayerNorm(model_dim)

    def forward(self, x):
        forwarded_states = self.layer_norm(x)
        forwarded_states = self.DenseReluDense(forwarded_states)
        x += forwarded_states
        return x


class T5Attention(torch.nn.Module):
    def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias):
        super().__init__()
        self.q = torch.nn.Linear(model_dim, inner_dim, bias=False)
        self.k = torch.nn.Linear(model_dim, inner_dim, bias=False)
        self.v = torch.nn.Linear(model_dim, inner_dim, bias=False)
        self.o = torch.nn.Linear(inner_dim, model_dim, bias=False)
        self.num_heads = num_heads

        self.relative_attention_bias = None
        if relative_attention_bias:
            self.relative_attention_num_buckets = 32
            self.relative_attention_max_distance = 128
            self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads)

    @staticmethod
    def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
        relative_buckets = 0
        if bidirectional:
            num_buckets //= 2
            relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
            relative_position = torch.abs(relative_position)
        else:
            relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))

        max_exact = num_buckets // 2
        is_small = relative_position < max_exact

        relative_position_if_large = max_exact + (
                torch.log(relative_position.float() / max_exact)
                / math.log(max_distance / max_exact)
                * (num_buckets - max_exact)
        ).to(torch.long)
        relative_position_if_large = torch.min(
            relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
        )

        relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
        return relative_buckets

    def compute_bias(self, query_length, key_length, device, dtype):
        context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
        memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
        relative_position = memory_position - context_position
        relative_position_bucket = self._relative_position_bucket(
            relative_position,
            bidirectional=True,
            num_buckets=self.relative_attention_num_buckets,
            max_distance=self.relative_attention_max_distance,
        )
        values = self.relative_attention_bias(relative_position_bucket).to(dtype)
        values = values.permute([2, 0, 1]).unsqueeze(0)
        return values

    def forward(self, x, mask=None, past_bias=None):
        q = self.q(x)
        k = self.k(x)
        v = self.v(x)
        if self.relative_attention_bias is not None:
            past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device, x.dtype)

        if past_bias is not None:
            if mask is not None:
                mask = mask + past_bias
            else:
                mask = past_bias

        out = attention_function(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask)
        return self.o(out), past_bias


class T5LayerSelfAttention(torch.nn.Module):
    def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias):
        super().__init__()
        self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias)
        self.layer_norm = T5LayerNorm(model_dim)

    def forward(self, x, mask=None, past_bias=None):
        output, past_bias = self.SelfAttention(self.layer_norm(x), mask=mask, past_bias=past_bias)
        x += output
        return x, past_bias


class T5Block(torch.nn.Module):
    def __init__(self, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention_bias):
        super().__init__()
        self.layer = torch.nn.ModuleList()
        self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias))
        self.layer.append(T5LayerFF(model_dim, ff_dim, ff_activation, gated_act))

    def forward(self, x, mask=None, past_bias=None):
        x, past_bias = self.layer[0](x, mask, past_bias)
        x = self.layer[-1](x)
        return x, past_bias


class T5Stack(torch.nn.Module):
    def __init__(self, num_layers, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention):
        super().__init__()

        self.block = torch.nn.ModuleList(
            [T5Block(model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention_bias=((not relative_attention) or (i == 0))) for i in range(num_layers)]
        )
        self.final_layer_norm = T5LayerNorm(model_dim)

    def forward(self, x, attention_mask=None):
        mask = None

        if attention_mask is not None:
            mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
            mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))

        past_bias = None

        for i, l in enumerate(self.block):
            x, past_bias = l(x, mask, past_bias)

        x = self.final_layer_norm(x)
        return x


class T5(torch.nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.num_layers = config["num_layers"]
        model_dim = config["d_model"]

        self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config["d_ff"], config["dense_act_fn"], config["is_gated_act"], config["num_heads"], config["model_type"] != "umt5")
        self.shared = torch.nn.Embedding(config["vocab_size"], model_dim)

    def forward(self, input_ids, *args, **kwargs):
        x = self.shared(input_ids)
        x = torch.nan_to_num(x)
        return self.encoder(x, *args, **kwargs)


class IntegratedT5(torch.nn.Module):
    def __init__(self, config):
        super().__init__()
        self.transformer = T5(config)
        self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))