File size: 11,363 Bytes
6831a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import math
import torch

from collections import namedtuple
from backend.text_processing import parsing, emphasis
from backend.text_processing.textual_inversion import EmbeddingDatabase
from backend import memory_management


PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding'])
last_extra_generation_params = {}


class PromptChunk:
    def __init__(self):
        self.tokens = []
        self.multipliers = []
        self.fixes = []


class CLIPEmbeddingForTextualInversion(torch.nn.Module):
    def __init__(self, wrapped, embeddings, textual_inversion_key='clip_l'):
        super().__init__()
        self.wrapped = wrapped
        self.embeddings = embeddings
        self.textual_inversion_key = textual_inversion_key
        self.weight = self.wrapped.weight

    def forward(self, input_ids):
        batch_fixes = self.embeddings.fixes
        self.embeddings.fixes = None

        inputs_embeds = self.wrapped(input_ids)

        if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0:
            return inputs_embeds

        vecs = []
        for fixes, tensor in zip(batch_fixes, inputs_embeds):
            for offset, embedding in fixes:
                emb = embedding.vec[self.textual_inversion_key] if isinstance(embedding.vec, dict) else embedding.vec
                emb = emb.to(inputs_embeds)
                emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
                tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]).to(dtype=inputs_embeds.dtype)

            vecs.append(tensor)

        return torch.stack(vecs)


class ClassicTextProcessingEngine:
    def __init__(
            self, text_encoder, tokenizer, chunk_length=75,
            embedding_dir=None, embedding_key='clip_l', embedding_expected_shape=768, emphasis_name="Original",
            text_projection=False, minimal_clip_skip=1, clip_skip=1, return_pooled=False, final_layer_norm=True
    ):
        super().__init__()

        self.embeddings = EmbeddingDatabase(tokenizer, embedding_expected_shape)

        if isinstance(embedding_dir, str):
            self.embeddings.add_embedding_dir(embedding_dir)
            self.embeddings.load_textual_inversion_embeddings()

        self.embedding_key = embedding_key

        self.text_encoder = text_encoder
        self.tokenizer = tokenizer

        self.emphasis = emphasis.get_current_option(emphasis_name)()
        self.text_projection = text_projection
        self.minimal_clip_skip = minimal_clip_skip
        self.clip_skip = clip_skip
        self.return_pooled = return_pooled
        self.final_layer_norm = final_layer_norm

        self.chunk_length = chunk_length

        self.id_start = self.tokenizer.bos_token_id
        self.id_end = self.tokenizer.eos_token_id
        self.id_pad = self.tokenizer.pad_token_id

        model_embeddings = text_encoder.transformer.text_model.embeddings
        model_embeddings.token_embedding = CLIPEmbeddingForTextualInversion(model_embeddings.token_embedding, self.embeddings, textual_inversion_key=embedding_key)

        vocab = self.tokenizer.get_vocab()

        self.comma_token = vocab.get(',</w>', None)

        self.token_mults = {}

        tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k]
        for text, ident in tokens_with_parens:
            mult = 1.0
            for c in text:
                if c == '[':
                    mult /= 1.1
                if c == ']':
                    mult *= 1.1
                if c == '(':
                    mult *= 1.1
                if c == ')':
                    mult /= 1.1

            if mult != 1.0:
                self.token_mults[ident] = mult

    def empty_chunk(self):
        chunk = PromptChunk()
        chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1)
        chunk.multipliers = [1.0] * (self.chunk_length + 2)
        return chunk

    def get_target_prompt_token_count(self, token_count):
        return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length

    def tokenize(self, texts):
        tokenized = self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]

        return tokenized

    def encode_with_transformers(self, tokens):
        target_device = memory_management.text_encoder_device()

        self.text_encoder.transformer.text_model.embeddings.position_ids = self.text_encoder.transformer.text_model.embeddings.position_ids.to(device=target_device)
        self.text_encoder.transformer.text_model.embeddings.position_embedding = self.text_encoder.transformer.text_model.embeddings.position_embedding.to(dtype=torch.float32)
        self.text_encoder.transformer.text_model.embeddings.token_embedding = self.text_encoder.transformer.text_model.embeddings.token_embedding.to(dtype=torch.float32)

        tokens = tokens.to(target_device)

        outputs = self.text_encoder.transformer(tokens, output_hidden_states=True)

        layer_id = - max(self.clip_skip, self.minimal_clip_skip)
        z = outputs.hidden_states[layer_id]

        if self.final_layer_norm:
            z = self.text_encoder.transformer.text_model.final_layer_norm(z)

        if self.return_pooled:
            pooled_output = outputs.pooler_output

            if self.text_projection:
                pooled_output = self.text_encoder.transformer.text_projection(pooled_output)

            z.pooled = pooled_output
        return z

    def tokenize_line(self, line):
        parsed = parsing.parse_prompt_attention(line)

        tokenized = self.tokenize([text for text, _ in parsed])

        chunks = []
        chunk = PromptChunk()
        token_count = 0
        last_comma = -1

        def next_chunk(is_last=False):
            nonlocal token_count
            nonlocal last_comma
            nonlocal chunk

            if is_last:
                token_count += len(chunk.tokens)
            else:
                token_count += self.chunk_length

            to_add = self.chunk_length - len(chunk.tokens)
            if to_add > 0:
                chunk.tokens += [self.id_end] * to_add
                chunk.multipliers += [1.0] * to_add

            chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end]
            chunk.multipliers = [1.0] + chunk.multipliers + [1.0]

            last_comma = -1
            chunks.append(chunk)
            chunk = PromptChunk()

        for tokens, (text, weight) in zip(tokenized, parsed):
            if text == 'BREAK' and weight == -1:
                next_chunk()
                continue

            position = 0
            while position < len(tokens):
                token = tokens[position]

                comma_padding_backtrack = 20

                if token == self.comma_token:
                    last_comma = len(chunk.tokens)

                elif comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= comma_padding_backtrack:
                    break_location = last_comma + 1

                    reloc_tokens = chunk.tokens[break_location:]
                    reloc_mults = chunk.multipliers[break_location:]

                    chunk.tokens = chunk.tokens[:break_location]
                    chunk.multipliers = chunk.multipliers[:break_location]

                    next_chunk()
                    chunk.tokens = reloc_tokens
                    chunk.multipliers = reloc_mults

                if len(chunk.tokens) == self.chunk_length:
                    next_chunk()

                embedding, embedding_length_in_tokens = self.embeddings.find_embedding_at_position(tokens, position)
                if embedding is None:
                    chunk.tokens.append(token)
                    chunk.multipliers.append(weight)
                    position += 1
                    continue

                emb_len = int(embedding.vectors)
                if len(chunk.tokens) + emb_len > self.chunk_length:
                    next_chunk()

                chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding))

                chunk.tokens += [0] * emb_len
                chunk.multipliers += [weight] * emb_len
                position += embedding_length_in_tokens

        if chunk.tokens or not chunks:
            next_chunk(is_last=True)

        return chunks, token_count

    def process_texts(self, texts):
        token_count = 0

        cache = {}
        batch_chunks = []
        for line in texts:
            if line in cache:
                chunks = cache[line]
            else:
                chunks, current_token_count = self.tokenize_line(line)
                token_count = max(current_token_count, token_count)

                cache[line] = chunks

            batch_chunks.append(chunks)

        return batch_chunks, token_count

    def __call__(self, texts):
        batch_chunks, token_count = self.process_texts(texts)

        used_embeddings = {}
        chunk_count = max([len(x) for x in batch_chunks])

        zs = []
        for i in range(chunk_count):
            batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks]

            tokens = [x.tokens for x in batch_chunk]
            multipliers = [x.multipliers for x in batch_chunk]
            self.embeddings.fixes = [x.fixes for x in batch_chunk]

            for fixes in self.embeddings.fixes:
                for _position, embedding in fixes:
                    used_embeddings[embedding.name] = embedding

            z = self.process_tokens(tokens, multipliers)
            zs.append(z)

        global last_extra_generation_params

        if used_embeddings:
            names = []

            for name, embedding in used_embeddings.items():
                print(f'[Textual Inversion] Used Embedding [{name}] in CLIP of [{self.embedding_key}]')
                names.append(name.replace(":", "").replace(",", ""))

            if "TI" in last_extra_generation_params:
                last_extra_generation_params["TI"] += ", " + ", ".join(names)
            else:
                last_extra_generation_params["TI"] = ", ".join(names)

        if any(x for x in texts if "(" in x or "[" in x) and self.emphasis.name != "Original":
            last_extra_generation_params["Emphasis"] = self.emphasis.name

        if self.return_pooled:
            return torch.hstack(zs), zs[0].pooled
        else:
            return torch.hstack(zs)

    def process_tokens(self, remade_batch_tokens, batch_multipliers):
        tokens = torch.asarray(remade_batch_tokens)

        if self.id_end != self.id_pad:
            for batch_pos in range(len(remade_batch_tokens)):
                index = remade_batch_tokens[batch_pos].index(self.id_end)
                tokens[batch_pos, index + 1:tokens.shape[1]] = self.id_pad

        z = self.encode_with_transformers(tokens)

        pooled = getattr(z, 'pooled', None)

        self.emphasis.tokens = remade_batch_tokens
        self.emphasis.multipliers = torch.asarray(batch_multipliers).to(z)
        self.emphasis.z = z
        self.emphasis.after_transformers()
        z = self.emphasis.z

        if pooled is not None:
            z.pooled = pooled

        return z