Spaces:
Runtime error
Runtime error
File size: 11,363 Bytes
6831a54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import math
import torch
from collections import namedtuple
from backend.text_processing import parsing, emphasis
from backend.text_processing.textual_inversion import EmbeddingDatabase
from backend import memory_management
PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding'])
last_extra_generation_params = {}
class PromptChunk:
def __init__(self):
self.tokens = []
self.multipliers = []
self.fixes = []
class CLIPEmbeddingForTextualInversion(torch.nn.Module):
def __init__(self, wrapped, embeddings, textual_inversion_key='clip_l'):
super().__init__()
self.wrapped = wrapped
self.embeddings = embeddings
self.textual_inversion_key = textual_inversion_key
self.weight = self.wrapped.weight
def forward(self, input_ids):
batch_fixes = self.embeddings.fixes
self.embeddings.fixes = None
inputs_embeds = self.wrapped(input_ids)
if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0:
return inputs_embeds
vecs = []
for fixes, tensor in zip(batch_fixes, inputs_embeds):
for offset, embedding in fixes:
emb = embedding.vec[self.textual_inversion_key] if isinstance(embedding.vec, dict) else embedding.vec
emb = emb.to(inputs_embeds)
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]).to(dtype=inputs_embeds.dtype)
vecs.append(tensor)
return torch.stack(vecs)
class ClassicTextProcessingEngine:
def __init__(
self, text_encoder, tokenizer, chunk_length=75,
embedding_dir=None, embedding_key='clip_l', embedding_expected_shape=768, emphasis_name="Original",
text_projection=False, minimal_clip_skip=1, clip_skip=1, return_pooled=False, final_layer_norm=True
):
super().__init__()
self.embeddings = EmbeddingDatabase(tokenizer, embedding_expected_shape)
if isinstance(embedding_dir, str):
self.embeddings.add_embedding_dir(embedding_dir)
self.embeddings.load_textual_inversion_embeddings()
self.embedding_key = embedding_key
self.text_encoder = text_encoder
self.tokenizer = tokenizer
self.emphasis = emphasis.get_current_option(emphasis_name)()
self.text_projection = text_projection
self.minimal_clip_skip = minimal_clip_skip
self.clip_skip = clip_skip
self.return_pooled = return_pooled
self.final_layer_norm = final_layer_norm
self.chunk_length = chunk_length
self.id_start = self.tokenizer.bos_token_id
self.id_end = self.tokenizer.eos_token_id
self.id_pad = self.tokenizer.pad_token_id
model_embeddings = text_encoder.transformer.text_model.embeddings
model_embeddings.token_embedding = CLIPEmbeddingForTextualInversion(model_embeddings.token_embedding, self.embeddings, textual_inversion_key=embedding_key)
vocab = self.tokenizer.get_vocab()
self.comma_token = vocab.get(',</w>', None)
self.token_mults = {}
tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k]
for text, ident in tokens_with_parens:
mult = 1.0
for c in text:
if c == '[':
mult /= 1.1
if c == ']':
mult *= 1.1
if c == '(':
mult *= 1.1
if c == ')':
mult /= 1.1
if mult != 1.0:
self.token_mults[ident] = mult
def empty_chunk(self):
chunk = PromptChunk()
chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1)
chunk.multipliers = [1.0] * (self.chunk_length + 2)
return chunk
def get_target_prompt_token_count(self, token_count):
return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length
def tokenize(self, texts):
tokenized = self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
return tokenized
def encode_with_transformers(self, tokens):
target_device = memory_management.text_encoder_device()
self.text_encoder.transformer.text_model.embeddings.position_ids = self.text_encoder.transformer.text_model.embeddings.position_ids.to(device=target_device)
self.text_encoder.transformer.text_model.embeddings.position_embedding = self.text_encoder.transformer.text_model.embeddings.position_embedding.to(dtype=torch.float32)
self.text_encoder.transformer.text_model.embeddings.token_embedding = self.text_encoder.transformer.text_model.embeddings.token_embedding.to(dtype=torch.float32)
tokens = tokens.to(target_device)
outputs = self.text_encoder.transformer(tokens, output_hidden_states=True)
layer_id = - max(self.clip_skip, self.minimal_clip_skip)
z = outputs.hidden_states[layer_id]
if self.final_layer_norm:
z = self.text_encoder.transformer.text_model.final_layer_norm(z)
if self.return_pooled:
pooled_output = outputs.pooler_output
if self.text_projection:
pooled_output = self.text_encoder.transformer.text_projection(pooled_output)
z.pooled = pooled_output
return z
def tokenize_line(self, line):
parsed = parsing.parse_prompt_attention(line)
tokenized = self.tokenize([text for text, _ in parsed])
chunks = []
chunk = PromptChunk()
token_count = 0
last_comma = -1
def next_chunk(is_last=False):
nonlocal token_count
nonlocal last_comma
nonlocal chunk
if is_last:
token_count += len(chunk.tokens)
else:
token_count += self.chunk_length
to_add = self.chunk_length - len(chunk.tokens)
if to_add > 0:
chunk.tokens += [self.id_end] * to_add
chunk.multipliers += [1.0] * to_add
chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end]
chunk.multipliers = [1.0] + chunk.multipliers + [1.0]
last_comma = -1
chunks.append(chunk)
chunk = PromptChunk()
for tokens, (text, weight) in zip(tokenized, parsed):
if text == 'BREAK' and weight == -1:
next_chunk()
continue
position = 0
while position < len(tokens):
token = tokens[position]
comma_padding_backtrack = 20
if token == self.comma_token:
last_comma = len(chunk.tokens)
elif comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= comma_padding_backtrack:
break_location = last_comma + 1
reloc_tokens = chunk.tokens[break_location:]
reloc_mults = chunk.multipliers[break_location:]
chunk.tokens = chunk.tokens[:break_location]
chunk.multipliers = chunk.multipliers[:break_location]
next_chunk()
chunk.tokens = reloc_tokens
chunk.multipliers = reloc_mults
if len(chunk.tokens) == self.chunk_length:
next_chunk()
embedding, embedding_length_in_tokens = self.embeddings.find_embedding_at_position(tokens, position)
if embedding is None:
chunk.tokens.append(token)
chunk.multipliers.append(weight)
position += 1
continue
emb_len = int(embedding.vectors)
if len(chunk.tokens) + emb_len > self.chunk_length:
next_chunk()
chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding))
chunk.tokens += [0] * emb_len
chunk.multipliers += [weight] * emb_len
position += embedding_length_in_tokens
if chunk.tokens or not chunks:
next_chunk(is_last=True)
return chunks, token_count
def process_texts(self, texts):
token_count = 0
cache = {}
batch_chunks = []
for line in texts:
if line in cache:
chunks = cache[line]
else:
chunks, current_token_count = self.tokenize_line(line)
token_count = max(current_token_count, token_count)
cache[line] = chunks
batch_chunks.append(chunks)
return batch_chunks, token_count
def __call__(self, texts):
batch_chunks, token_count = self.process_texts(texts)
used_embeddings = {}
chunk_count = max([len(x) for x in batch_chunks])
zs = []
for i in range(chunk_count):
batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks]
tokens = [x.tokens for x in batch_chunk]
multipliers = [x.multipliers for x in batch_chunk]
self.embeddings.fixes = [x.fixes for x in batch_chunk]
for fixes in self.embeddings.fixes:
for _position, embedding in fixes:
used_embeddings[embedding.name] = embedding
z = self.process_tokens(tokens, multipliers)
zs.append(z)
global last_extra_generation_params
if used_embeddings:
names = []
for name, embedding in used_embeddings.items():
print(f'[Textual Inversion] Used Embedding [{name}] in CLIP of [{self.embedding_key}]')
names.append(name.replace(":", "").replace(",", ""))
if "TI" in last_extra_generation_params:
last_extra_generation_params["TI"] += ", " + ", ".join(names)
else:
last_extra_generation_params["TI"] = ", ".join(names)
if any(x for x in texts if "(" in x or "[" in x) and self.emphasis.name != "Original":
last_extra_generation_params["Emphasis"] = self.emphasis.name
if self.return_pooled:
return torch.hstack(zs), zs[0].pooled
else:
return torch.hstack(zs)
def process_tokens(self, remade_batch_tokens, batch_multipliers):
tokens = torch.asarray(remade_batch_tokens)
if self.id_end != self.id_pad:
for batch_pos in range(len(remade_batch_tokens)):
index = remade_batch_tokens[batch_pos].index(self.id_end)
tokens[batch_pos, index + 1:tokens.shape[1]] = self.id_pad
z = self.encode_with_transformers(tokens)
pooled = getattr(z, 'pooled', None)
self.emphasis.tokens = remade_batch_tokens
self.emphasis.multipliers = torch.asarray(batch_multipliers).to(z)
self.emphasis.z = z
self.emphasis.after_transformers()
z = self.emphasis.z
if pooled is not None:
z.pooled = pooled
return z
|