File size: 9,063 Bytes
6831a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import torch
import base64
import json
import zlib
import numpy as np
import safetensors.torch

from PIL import Image


class EmbeddingEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, torch.Tensor):
            return {'TORCHTENSOR': obj.cpu().detach().numpy().tolist()}
        return json.JSONEncoder.default(self, obj)


class EmbeddingDecoder(json.JSONDecoder):
    def __init__(self, *args, **kwargs):
        json.JSONDecoder.__init__(self, *args, object_hook=self.object_hook, **kwargs)

    def object_hook(self, d):
        if 'TORCHTENSOR' in d:
            return torch.from_numpy(np.array(d['TORCHTENSOR']))
        return d


def embedding_to_b64(data):
    d = json.dumps(data, cls=EmbeddingEncoder)
    return base64.b64encode(d.encode())


def embedding_from_b64(data):
    d = base64.b64decode(data)
    return json.loads(d, cls=EmbeddingDecoder)


def lcg(m=2 ** 32, a=1664525, c=1013904223, seed=0):
    while True:
        seed = (a * seed + c) % m
        yield seed % 255


def xor_block(block):
    g = lcg()
    randblock = np.array([next(g) for _ in range(np.prod(block.shape))]).astype(np.uint8).reshape(block.shape)
    return np.bitwise_xor(block.astype(np.uint8), randblock & 0x0F)


def crop_black(img, tol=0):
    mask = (img > tol).all(2)
    mask0, mask1 = mask.any(0), mask.any(1)
    col_start, col_end = mask0.argmax(), mask.shape[1] - mask0[::-1].argmax()
    row_start, row_end = mask1.argmax(), mask.shape[0] - mask1[::-1].argmax()
    return img[row_start:row_end, col_start:col_end]


def extract_image_data_embed(image):
    d = 3
    outarr = crop_black(np.array(image.convert('RGB').getdata()).reshape(image.size[1], image.size[0], d).astype(np.uint8)) & 0x0F
    black_cols = np.where(np.sum(outarr, axis=(0, 2)) == 0)
    if black_cols[0].shape[0] < 2:
        print(f'{os.path.basename(getattr(image, "filename", "unknown image file"))}: no embedded information found.')
        return None

    data_block_lower = outarr[:, :black_cols[0].min(), :].astype(np.uint8)
    data_block_upper = outarr[:, black_cols[0].max() + 1:, :].astype(np.uint8)

    data_block_lower = xor_block(data_block_lower)
    data_block_upper = xor_block(data_block_upper)

    data_block = (data_block_upper << 4) | (data_block_lower)
    data_block = data_block.flatten().tobytes()

    data = zlib.decompress(data_block)
    return json.loads(data, cls=EmbeddingDecoder)


class Embedding:
    def __init__(self, vec, name, step=None):
        self.vec = vec
        self.name = name
        self.step = step
        self.shape = None
        self.vectors = 0
        self.sd_checkpoint = None
        self.sd_checkpoint_name = None


class DirWithTextualInversionEmbeddings:
    def __init__(self, path):
        self.path = path
        self.mtime = None

    def has_changed(self):
        if not os.path.isdir(self.path):
            return False

        mt = os.path.getmtime(self.path)
        if self.mtime is None or mt > self.mtime:
            return True

    def update(self):
        if not os.path.isdir(self.path):
            return

        self.mtime = os.path.getmtime(self.path)


class EmbeddingDatabase:
    def __init__(self, tokenizer, expected_shape=-1):
        self.ids_lookup = {}
        self.word_embeddings = {}
        self.embedding_dirs = {}
        self.skipped_embeddings = {}
        self.expected_shape = expected_shape
        self.tokenizer = tokenizer
        self.fixes = []

    def add_embedding_dir(self, path):
        self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)

    def clear_embedding_dirs(self):
        self.embedding_dirs.clear()

    def register_embedding(self, embedding):
        return self.register_embedding_by_name(embedding, embedding.name)

    def register_embedding_by_name(self, embedding, name):
        ids = self.tokenizer([name], truncation=False, add_special_tokens=False)["input_ids"][0]
        first_id = ids[0]
        if first_id not in self.ids_lookup:
            self.ids_lookup[first_id] = []
        if name in self.word_embeddings:
            lookup = [x for x in self.ids_lookup[first_id] if x[1].name != name]
        else:
            lookup = self.ids_lookup[first_id]
        if embedding is not None:
            lookup += [(ids, embedding)]
        self.ids_lookup[first_id] = sorted(lookup, key=lambda x: len(x[0]), reverse=True)
        if embedding is None:
            if name in self.word_embeddings:
                del self.word_embeddings[name]
            if len(self.ids_lookup[first_id]) == 0:
                del self.ids_lookup[first_id]
            return None
        self.word_embeddings[name] = embedding
        return embedding

    def load_from_file(self, path, filename):
        name, ext = os.path.splitext(filename)
        ext = ext.upper()

        if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
            _, second_ext = os.path.splitext(name)
            if second_ext.upper() == '.PREVIEW':
                return

            embed_image = Image.open(path)
            if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
                data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
                name = data.get('name', name)
            else:
                data = extract_image_data_embed(embed_image)
                if data:
                    name = data.get('name', name)
                else:
                    return
        elif ext in ['.BIN', '.PT']:
            data = torch.load(path, map_location="cpu")
        elif ext in ['.SAFETENSORS']:
            data = safetensors.torch.load_file(path, device="cpu")
        else:
            return

        if data is not None:
            embedding = create_embedding_from_data(data, name, filename=filename, filepath=path)

            if self.expected_shape == -1 or self.expected_shape == embedding.shape:
                self.register_embedding(embedding)
            else:
                self.skipped_embeddings[name] = embedding
        else:
            print(f"Unable to load Textual inversion embedding due to data issue: '{name}'.")

    def load_from_dir(self, embdir):
        if not os.path.isdir(embdir.path):
            return

        for root, _, fns in os.walk(embdir.path, followlinks=True):
            for fn in fns:
                try:
                    fullfn = os.path.join(root, fn)

                    if os.stat(fullfn).st_size == 0:
                        continue

                    self.load_from_file(fullfn, fn)
                except Exception:
                    print(f"Error loading embedding {fn}")
                    continue

    def load_textual_inversion_embeddings(self):
        self.ids_lookup.clear()
        self.word_embeddings.clear()
        self.skipped_embeddings.clear()

        for embdir in self.embedding_dirs.values():
            self.load_from_dir(embdir)
            embdir.update()

        return

    def find_embedding_at_position(self, tokens, offset):
        token = tokens[offset]
        possible_matches = self.ids_lookup.get(token, None)

        if possible_matches is None:
            return None, None

        for ids, embedding in possible_matches:
            if tokens[offset:offset + len(ids)] == ids:
                return embedding, len(ids)

        return None, None


def create_embedding_from_data(data, name, filename='unknown embedding file', filepath=None):
    if 'string_to_param' in data:  # textual inversion embeddings
        param_dict = data['string_to_param']
        param_dict = getattr(param_dict, '_parameters', param_dict)  # fix for torch 1.12.1 loading saved file from torch 1.11
        assert len(param_dict) == 1, 'embedding file has multiple terms in it'
        emb = next(iter(param_dict.items()))[1]
        vec = emb.detach().to(dtype=torch.float32)
        shape = vec.shape[-1]
        vectors = vec.shape[0]
    elif type(data) == dict and 'clip_g' in data and 'clip_l' in data:  # SDXL embedding
        vec = {k: v.detach().to(dtype=torch.float32) for k, v in data.items()}
        shape = data['clip_g'].shape[-1] + data['clip_l'].shape[-1]
        vectors = data['clip_g'].shape[0]
    elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:  # diffuser concepts
        assert len(data.keys()) == 1, 'embedding file has multiple terms in it'

        emb = next(iter(data.values()))
        if len(emb.shape) == 1:
            emb = emb.unsqueeze(0)
        vec = emb.detach().to(dtype=torch.float32)
        shape = vec.shape[-1]
        vectors = vec.shape[0]
    else:
        raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")

    embedding = Embedding(vec, name)
    embedding.step = data.get('step', None)
    embedding.sd_checkpoint = data.get('sd_checkpoint', None)
    embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
    embedding.vectors = vectors
    embedding.shape = shape

    return embedding