moistdio's picture
Upload folder using huggingface_hub
6831a54 verified
import torch
from collections import namedtuple
from backend.text_processing import parsing, emphasis
from backend import memory_management
PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding'])
class PromptChunk:
def __init__(self):
self.tokens = []
self.multipliers = []
class T5TextProcessingEngine:
def __init__(self, text_encoder, tokenizer, emphasis_name="Original", min_length=256):
super().__init__()
self.text_encoder = text_encoder.transformer
self.tokenizer = tokenizer
self.emphasis = emphasis.get_current_option(emphasis_name)()
self.min_length = min_length
self.id_end = 1
self.id_pad = 0
vocab = self.tokenizer.get_vocab()
self.comma_token = vocab.get(',</w>', None)
self.token_mults = {}
tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k]
for text, ident in tokens_with_parens:
mult = 1.0
for c in text:
if c == '[':
mult /= 1.1
if c == ']':
mult *= 1.1
if c == '(':
mult *= 1.1
if c == ')':
mult /= 1.1
if mult != 1.0:
self.token_mults[ident] = mult
def tokenize(self, texts):
tokenized = self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
return tokenized
def encode_with_transformers(self, tokens):
device = memory_management.text_encoder_device()
tokens = tokens.to(device)
self.text_encoder.shared.to(device=device, dtype=torch.float32)
z = self.text_encoder(
input_ids=tokens,
)
return z
def tokenize_line(self, line):
parsed = parsing.parse_prompt_attention(line)
tokenized = self.tokenize([text for text, _ in parsed])
chunks = []
chunk = PromptChunk()
token_count = 0
def next_chunk():
nonlocal token_count
nonlocal chunk
chunk.tokens = chunk.tokens + [self.id_end]
chunk.multipliers = chunk.multipliers + [1.0]
current_chunk_length = len(chunk.tokens)
token_count += current_chunk_length
remaining_count = self.min_length - current_chunk_length
if remaining_count > 0:
chunk.tokens += [self.id_pad] * remaining_count
chunk.multipliers += [1.0] * remaining_count
chunks.append(chunk)
chunk = PromptChunk()
for tokens, (text, weight) in zip(tokenized, parsed):
if text == 'BREAK' and weight == -1:
next_chunk()
continue
position = 0
while position < len(tokens):
token = tokens[position]
chunk.tokens.append(token)
chunk.multipliers.append(weight)
position += 1
if chunk.tokens or not chunks:
next_chunk()
return chunks, token_count
def __call__(self, texts):
zs = []
cache = {}
for line in texts:
if line in cache:
line_z_values = cache[line]
else:
chunks, token_count = self.tokenize_line(line)
line_z_values = []
for chunk in chunks:
tokens = chunk.tokens
multipliers = chunk.multipliers
z = self.process_tokens([tokens], [multipliers])[0]
line_z_values.append(z)
cache[line] = line_z_values
zs.extend(line_z_values)
return torch.stack(zs)
def process_tokens(self, batch_tokens, batch_multipliers):
tokens = torch.asarray(batch_tokens)
z = self.encode_with_transformers(tokens)
self.emphasis.tokens = batch_tokens
self.emphasis.multipliers = torch.asarray(batch_multipliers).to(z)
self.emphasis.z = z
self.emphasis.after_transformers()
z = self.emphasis.z
return z