Spaces:
Runtime error
Runtime error
# """ | |
# wild mixture of | |
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py | |
# https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py | |
# https://github.com/CompVis/taming-transformers | |
# -- merci | |
# """ | |
# | |
# # File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion). | |
# # See more details in LICENSE. | |
# | |
# import torch | |
# import torch.nn as nn | |
# import numpy as np | |
# import pytorch_lightning as pl | |
# from torch.optim.lr_scheduler import LambdaLR | |
# from einops import rearrange, repeat | |
# from contextlib import contextmanager | |
# from functools import partial | |
# from tqdm import tqdm | |
# from torchvision.utils import make_grid | |
# from pytorch_lightning.utilities.distributed import rank_zero_only | |
# | |
# from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config | |
# from ldm.modules.ema import LitEma | |
# from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution | |
# from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL | |
# from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like | |
# from ldm.models.diffusion.ddim import DDIMSampler | |
# | |
# try: | |
# from ldm.models.autoencoder import VQModelInterface | |
# except Exception: | |
# class VQModelInterface: | |
# pass | |
# | |
# __conditioning_keys__ = {'concat': 'c_concat', | |
# 'crossattn': 'c_crossattn', | |
# 'adm': 'y'} | |
# | |
# | |
# def disabled_train(self, mode=True): | |
# """Overwrite model.train with this function to make sure train/eval mode | |
# does not change anymore.""" | |
# return self | |
# | |
# | |
# def uniform_on_device(r1, r2, shape, device): | |
# return (r1 - r2) * torch.rand(*shape, device=device) + r2 | |
# | |
# | |
# class DDPM(pl.LightningModule): | |
# # classic DDPM with Gaussian diffusion, in image space | |
# def __init__(self, | |
# unet_config, | |
# timesteps=1000, | |
# beta_schedule="linear", | |
# loss_type="l2", | |
# ckpt_path=None, | |
# ignore_keys=None, | |
# load_only_unet=False, | |
# monitor="val/loss", | |
# use_ema=True, | |
# first_stage_key="image", | |
# image_size=256, | |
# channels=3, | |
# log_every_t=100, | |
# clip_denoised=True, | |
# linear_start=1e-4, | |
# linear_end=2e-2, | |
# cosine_s=8e-3, | |
# given_betas=None, | |
# original_elbo_weight=0., | |
# v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta | |
# l_simple_weight=1., | |
# conditioning_key=None, | |
# parameterization="eps", # all assuming fixed variance schedules | |
# scheduler_config=None, | |
# use_positional_encodings=False, | |
# learn_logvar=False, | |
# logvar_init=0., | |
# load_ema=True, | |
# ): | |
# super().__init__() | |
# assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"' | |
# self.parameterization = parameterization | |
# print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") | |
# self.cond_stage_model = None | |
# self.clip_denoised = clip_denoised | |
# self.log_every_t = log_every_t | |
# self.first_stage_key = first_stage_key | |
# self.image_size = image_size # try conv? | |
# self.channels = channels | |
# self.use_positional_encodings = use_positional_encodings | |
# self.model = DiffusionWrapper(unet_config, conditioning_key) | |
# count_params(self.model, verbose=True) | |
# self.use_ema = use_ema | |
# | |
# self.use_scheduler = scheduler_config is not None | |
# if self.use_scheduler: | |
# self.scheduler_config = scheduler_config | |
# | |
# self.v_posterior = v_posterior | |
# self.original_elbo_weight = original_elbo_weight | |
# self.l_simple_weight = l_simple_weight | |
# | |
# if monitor is not None: | |
# self.monitor = monitor | |
# | |
# if self.use_ema and load_ema: | |
# self.model_ema = LitEma(self.model) | |
# print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
# | |
# if ckpt_path is not None: | |
# self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet) | |
# | |
# # If initialing from EMA-only checkpoint, create EMA model after loading. | |
# if self.use_ema and not load_ema: | |
# self.model_ema = LitEma(self.model) | |
# print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
# | |
# self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, | |
# linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) | |
# | |
# self.loss_type = loss_type | |
# | |
# self.learn_logvar = learn_logvar | |
# self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) | |
# if self.learn_logvar: | |
# self.logvar = nn.Parameter(self.logvar, requires_grad=True) | |
# | |
# | |
# def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, | |
# linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
# if exists(given_betas): | |
# betas = given_betas | |
# else: | |
# betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, | |
# cosine_s=cosine_s) | |
# alphas = 1. - betas | |
# alphas_cumprod = np.cumprod(alphas, axis=0) | |
# alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) | |
# | |
# timesteps, = betas.shape | |
# self.num_timesteps = int(timesteps) | |
# self.linear_start = linear_start | |
# self.linear_end = linear_end | |
# assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' | |
# | |
# to_torch = partial(torch.tensor, dtype=torch.float32) | |
# | |
# self.register_buffer('betas', to_torch(betas)) | |
# self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
# self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) | |
# | |
# # calculations for diffusion q(x_t | x_{t-1}) and others | |
# self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) | |
# self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) | |
# self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) | |
# self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) | |
# self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) | |
# | |
# # calculations for posterior q(x_{t-1} | x_t, x_0) | |
# posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( | |
# 1. - alphas_cumprod) + self.v_posterior * betas | |
# # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) | |
# self.register_buffer('posterior_variance', to_torch(posterior_variance)) | |
# # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
# self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) | |
# self.register_buffer('posterior_mean_coef1', to_torch( | |
# betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) | |
# self.register_buffer('posterior_mean_coef2', to_torch( | |
# (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) | |
# | |
# if self.parameterization == "eps": | |
# lvlb_weights = self.betas ** 2 / ( | |
# 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) | |
# elif self.parameterization == "x0": | |
# lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) | |
# else: | |
# raise NotImplementedError("mu not supported") | |
# # TODO how to choose this term | |
# lvlb_weights[0] = lvlb_weights[1] | |
# self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) | |
# assert not torch.isnan(self.lvlb_weights).all() | |
# | |
# @contextmanager | |
# def ema_scope(self, context=None): | |
# if self.use_ema: | |
# self.model_ema.store(self.model.parameters()) | |
# self.model_ema.copy_to(self.model) | |
# if context is not None: | |
# print(f"{context}: Switched to EMA weights") | |
# try: | |
# yield None | |
# finally: | |
# if self.use_ema: | |
# self.model_ema.restore(self.model.parameters()) | |
# if context is not None: | |
# print(f"{context}: Restored training weights") | |
# | |
# def init_from_ckpt(self, path, ignore_keys=None, only_model=False): | |
# ignore_keys = ignore_keys or [] | |
# | |
# sd = torch.load(path, map_location="cpu") | |
# if "state_dict" in list(sd.keys()): | |
# sd = sd["state_dict"] | |
# keys = list(sd.keys()) | |
# | |
# # Our model adds additional channels to the first layer to condition on an input image. | |
# # For the first layer, copy existing channel weights and initialize new channel weights to zero. | |
# input_keys = [ | |
# "model.diffusion_model.input_blocks.0.0.weight", | |
# "model_ema.diffusion_modelinput_blocks00weight", | |
# ] | |
# | |
# self_sd = self.state_dict() | |
# for input_key in input_keys: | |
# if input_key not in sd or input_key not in self_sd: | |
# continue | |
# | |
# input_weight = self_sd[input_key] | |
# | |
# if input_weight.size() != sd[input_key].size(): | |
# print(f"Manual init: {input_key}") | |
# input_weight.zero_() | |
# input_weight[:, :4, :, :].copy_(sd[input_key]) | |
# ignore_keys.append(input_key) | |
# | |
# for k in keys: | |
# for ik in ignore_keys: | |
# if k.startswith(ik): | |
# print(f"Deleting key {k} from state_dict.") | |
# del sd[k] | |
# missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( | |
# sd, strict=False) | |
# print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") | |
# if missing: | |
# print(f"Missing Keys: {missing}") | |
# if unexpected: | |
# print(f"Unexpected Keys: {unexpected}") | |
# | |
# def q_mean_variance(self, x_start, t): | |
# """ | |
# Get the distribution q(x_t | x_0). | |
# :param x_start: the [N x C x ...] tensor of noiseless inputs. | |
# :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
# :return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
# """ | |
# mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) | |
# variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) | |
# log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) | |
# return mean, variance, log_variance | |
# | |
# def predict_start_from_noise(self, x_t, t, noise): | |
# return ( | |
# extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - | |
# extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise | |
# ) | |
# | |
# def q_posterior(self, x_start, x_t, t): | |
# posterior_mean = ( | |
# extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + | |
# extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
# ) | |
# posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
# posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) | |
# return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
# | |
# def p_mean_variance(self, x, t, clip_denoised: bool): | |
# model_out = self.model(x, t) | |
# if self.parameterization == "eps": | |
# x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
# elif self.parameterization == "x0": | |
# x_recon = model_out | |
# if clip_denoised: | |
# x_recon.clamp_(-1., 1.) | |
# | |
# model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
# return model_mean, posterior_variance, posterior_log_variance | |
# | |
# @torch.no_grad() | |
# def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): | |
# b, *_, device = *x.shape, x.device | |
# model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) | |
# noise = noise_like(x.shape, device, repeat_noise) | |
# # no noise when t == 0 | |
# nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
# return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
# | |
# @torch.no_grad() | |
# def p_sample_loop(self, shape, return_intermediates=False): | |
# device = self.betas.device | |
# b = shape[0] | |
# img = torch.randn(shape, device=device) | |
# intermediates = [img] | |
# for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): | |
# img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), | |
# clip_denoised=self.clip_denoised) | |
# if i % self.log_every_t == 0 or i == self.num_timesteps - 1: | |
# intermediates.append(img) | |
# if return_intermediates: | |
# return img, intermediates | |
# return img | |
# | |
# @torch.no_grad() | |
# def sample(self, batch_size=16, return_intermediates=False): | |
# image_size = self.image_size | |
# channels = self.channels | |
# return self.p_sample_loop((batch_size, channels, image_size, image_size), | |
# return_intermediates=return_intermediates) | |
# | |
# def q_sample(self, x_start, t, noise=None): | |
# noise = default(noise, lambda: torch.randn_like(x_start)) | |
# return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + | |
# extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) | |
# | |
# def get_loss(self, pred, target, mean=True): | |
# if self.loss_type == 'l1': | |
# loss = (target - pred).abs() | |
# if mean: | |
# loss = loss.mean() | |
# elif self.loss_type == 'l2': | |
# if mean: | |
# loss = torch.nn.functional.mse_loss(target, pred) | |
# else: | |
# loss = torch.nn.functional.mse_loss(target, pred, reduction='none') | |
# else: | |
# raise NotImplementedError("unknown loss type '{loss_type}'") | |
# | |
# return loss | |
# | |
# def p_losses(self, x_start, t, noise=None): | |
# noise = default(noise, lambda: torch.randn_like(x_start)) | |
# x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
# model_out = self.model(x_noisy, t) | |
# | |
# loss_dict = {} | |
# if self.parameterization == "eps": | |
# target = noise | |
# elif self.parameterization == "x0": | |
# target = x_start | |
# else: | |
# raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported") | |
# | |
# loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) | |
# | |
# log_prefix = 'train' if self.training else 'val' | |
# | |
# loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) | |
# loss_simple = loss.mean() * self.l_simple_weight | |
# | |
# loss_vlb = (self.lvlb_weights[t] * loss).mean() | |
# loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) | |
# | |
# loss = loss_simple + self.original_elbo_weight * loss_vlb | |
# | |
# loss_dict.update({f'{log_prefix}/loss': loss}) | |
# | |
# return loss, loss_dict | |
# | |
# def forward(self, x, *args, **kwargs): | |
# # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size | |
# # assert h == img_size and w == img_size, f'height and width of image must be {img_size}' | |
# t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() | |
# return self.p_losses(x, t, *args, **kwargs) | |
# | |
# def get_input(self, batch, k): | |
# return batch[k] | |
# | |
# def shared_step(self, batch): | |
# x = self.get_input(batch, self.first_stage_key) | |
# loss, loss_dict = self(x) | |
# return loss, loss_dict | |
# | |
# def training_step(self, batch, batch_idx): | |
# loss, loss_dict = self.shared_step(batch) | |
# | |
# self.log_dict(loss_dict, prog_bar=True, | |
# logger=True, on_step=True, on_epoch=True) | |
# | |
# self.log("global_step", self.global_step, | |
# prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
# | |
# if self.use_scheduler: | |
# lr = self.optimizers().param_groups[0]['lr'] | |
# self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
# | |
# return loss | |
# | |
# @torch.no_grad() | |
# def validation_step(self, batch, batch_idx): | |
# _, loss_dict_no_ema = self.shared_step(batch) | |
# with self.ema_scope(): | |
# _, loss_dict_ema = self.shared_step(batch) | |
# loss_dict_ema = {f"{key}_ema": loss_dict_ema[key] for key in loss_dict_ema} | |
# self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) | |
# self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) | |
# | |
# def on_train_batch_end(self, *args, **kwargs): | |
# if self.use_ema: | |
# self.model_ema(self.model) | |
# | |
# def _get_rows_from_list(self, samples): | |
# n_imgs_per_row = len(samples) | |
# denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') | |
# denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') | |
# denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) | |
# return denoise_grid | |
# | |
# @torch.no_grad() | |
# def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): | |
# log = {} | |
# x = self.get_input(batch, self.first_stage_key) | |
# N = min(x.shape[0], N) | |
# n_row = min(x.shape[0], n_row) | |
# x = x.to(self.device)[:N] | |
# log["inputs"] = x | |
# | |
# # get diffusion row | |
# diffusion_row = [] | |
# x_start = x[:n_row] | |
# | |
# for t in range(self.num_timesteps): | |
# if t % self.log_every_t == 0 or t == self.num_timesteps - 1: | |
# t = repeat(torch.tensor([t]), '1 -> b', b=n_row) | |
# t = t.to(self.device).long() | |
# noise = torch.randn_like(x_start) | |
# x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
# diffusion_row.append(x_noisy) | |
# | |
# log["diffusion_row"] = self._get_rows_from_list(diffusion_row) | |
# | |
# if sample: | |
# # get denoise row | |
# with self.ema_scope("Plotting"): | |
# samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) | |
# | |
# log["samples"] = samples | |
# log["denoise_row"] = self._get_rows_from_list(denoise_row) | |
# | |
# if return_keys: | |
# if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: | |
# return log | |
# else: | |
# return {key: log[key] for key in return_keys} | |
# return log | |
# | |
# def configure_optimizers(self): | |
# lr = self.learning_rate | |
# params = list(self.model.parameters()) | |
# if self.learn_logvar: | |
# params = params + [self.logvar] | |
# opt = torch.optim.AdamW(params, lr=lr) | |
# return opt | |
# | |
# | |
# class LatentDiffusion(DDPM): | |
# """main class""" | |
# def __init__(self, | |
# first_stage_config, | |
# cond_stage_config, | |
# num_timesteps_cond=None, | |
# cond_stage_key="image", | |
# cond_stage_trainable=False, | |
# concat_mode=True, | |
# cond_stage_forward=None, | |
# conditioning_key=None, | |
# scale_factor=1.0, | |
# scale_by_std=False, | |
# load_ema=True, | |
# *args, **kwargs): | |
# self.num_timesteps_cond = default(num_timesteps_cond, 1) | |
# self.scale_by_std = scale_by_std | |
# assert self.num_timesteps_cond <= kwargs['timesteps'] | |
# # for backwards compatibility after implementation of DiffusionWrapper | |
# if conditioning_key is None: | |
# conditioning_key = 'concat' if concat_mode else 'crossattn' | |
# if cond_stage_config == '__is_unconditional__': | |
# conditioning_key = None | |
# ckpt_path = kwargs.pop("ckpt_path", None) | |
# ignore_keys = kwargs.pop("ignore_keys", []) | |
# super().__init__(*args, conditioning_key=conditioning_key, load_ema=load_ema, **kwargs) | |
# self.concat_mode = concat_mode | |
# self.cond_stage_trainable = cond_stage_trainable | |
# self.cond_stage_key = cond_stage_key | |
# try: | |
# self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 | |
# except Exception: | |
# self.num_downs = 0 | |
# if not scale_by_std: | |
# self.scale_factor = scale_factor | |
# else: | |
# self.register_buffer('scale_factor', torch.tensor(scale_factor)) | |
# self.instantiate_first_stage(first_stage_config) | |
# self.instantiate_cond_stage(cond_stage_config) | |
# self.cond_stage_forward = cond_stage_forward | |
# self.clip_denoised = False | |
# self.bbox_tokenizer = None | |
# | |
# self.restarted_from_ckpt = False | |
# if ckpt_path is not None: | |
# self.init_from_ckpt(ckpt_path, ignore_keys) | |
# self.restarted_from_ckpt = True | |
# | |
# if self.use_ema and not load_ema: | |
# self.model_ema = LitEma(self.model) | |
# print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
# | |
# def make_cond_schedule(self, ): | |
# self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) | |
# ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() | |
# self.cond_ids[:self.num_timesteps_cond] = ids | |
# | |
# @rank_zero_only | |
# @torch.no_grad() | |
# def on_train_batch_start(self, batch, batch_idx, dataloader_idx): | |
# # only for very first batch | |
# if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: | |
# assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' | |
# # set rescale weight to 1./std of encodings | |
# print("### USING STD-RESCALING ###") | |
# x = super().get_input(batch, self.first_stage_key) | |
# x = x.to(self.device) | |
# encoder_posterior = self.encode_first_stage(x) | |
# z = self.get_first_stage_encoding(encoder_posterior).detach() | |
# del self.scale_factor | |
# self.register_buffer('scale_factor', 1. / z.flatten().std()) | |
# print(f"setting self.scale_factor to {self.scale_factor}") | |
# print("### USING STD-RESCALING ###") | |
# | |
# def register_schedule(self, | |
# given_betas=None, beta_schedule="linear", timesteps=1000, | |
# linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
# super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) | |
# | |
# self.shorten_cond_schedule = self.num_timesteps_cond > 1 | |
# if self.shorten_cond_schedule: | |
# self.make_cond_schedule() | |
# | |
# def instantiate_first_stage(self, config): | |
# model = instantiate_from_config(config) | |
# self.first_stage_model = model.eval() | |
# self.first_stage_model.train = disabled_train | |
# for param in self.first_stage_model.parameters(): | |
# param.requires_grad = False | |
# | |
# def instantiate_cond_stage(self, config): | |
# if not self.cond_stage_trainable: | |
# if config == "__is_first_stage__": | |
# print("Using first stage also as cond stage.") | |
# self.cond_stage_model = self.first_stage_model | |
# elif config == "__is_unconditional__": | |
# print(f"Training {self.__class__.__name__} as an unconditional model.") | |
# self.cond_stage_model = None | |
# # self.be_unconditional = True | |
# else: | |
# model = instantiate_from_config(config) | |
# self.cond_stage_model = model.eval() | |
# self.cond_stage_model.train = disabled_train | |
# for param in self.cond_stage_model.parameters(): | |
# param.requires_grad = False | |
# else: | |
# assert config != '__is_first_stage__' | |
# assert config != '__is_unconditional__' | |
# model = instantiate_from_config(config) | |
# self.cond_stage_model = model | |
# | |
# def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): | |
# denoise_row = [] | |
# for zd in tqdm(samples, desc=desc): | |
# denoise_row.append(self.decode_first_stage(zd.to(self.device), | |
# force_not_quantize=force_no_decoder_quantization)) | |
# n_imgs_per_row = len(denoise_row) | |
# denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W | |
# denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') | |
# denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') | |
# denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) | |
# return denoise_grid | |
# | |
# def get_first_stage_encoding(self, encoder_posterior): | |
# if isinstance(encoder_posterior, DiagonalGaussianDistribution): | |
# z = encoder_posterior.sample() | |
# elif isinstance(encoder_posterior, torch.Tensor): | |
# z = encoder_posterior | |
# else: | |
# raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") | |
# return self.scale_factor * z | |
# | |
# def get_learned_conditioning(self, c): | |
# if self.cond_stage_forward is None: | |
# if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): | |
# c = self.cond_stage_model.encode(c) | |
# if isinstance(c, DiagonalGaussianDistribution): | |
# c = c.mode() | |
# else: | |
# c = self.cond_stage_model(c) | |
# else: | |
# assert hasattr(self.cond_stage_model, self.cond_stage_forward) | |
# c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) | |
# return c | |
# | |
# def meshgrid(self, h, w): | |
# y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) | |
# x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) | |
# | |
# arr = torch.cat([y, x], dim=-1) | |
# return arr | |
# | |
# def delta_border(self, h, w): | |
# """ | |
# :param h: height | |
# :param w: width | |
# :return: normalized distance to image border, | |
# wtith min distance = 0 at border and max dist = 0.5 at image center | |
# """ | |
# lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) | |
# arr = self.meshgrid(h, w) / lower_right_corner | |
# dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] | |
# dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] | |
# edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] | |
# return edge_dist | |
# | |
# def get_weighting(self, h, w, Ly, Lx, device): | |
# weighting = self.delta_border(h, w) | |
# weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], | |
# self.split_input_params["clip_max_weight"], ) | |
# weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) | |
# | |
# if self.split_input_params["tie_braker"]: | |
# L_weighting = self.delta_border(Ly, Lx) | |
# L_weighting = torch.clip(L_weighting, | |
# self.split_input_params["clip_min_tie_weight"], | |
# self.split_input_params["clip_max_tie_weight"]) | |
# | |
# L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) | |
# weighting = weighting * L_weighting | |
# return weighting | |
# | |
# def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code | |
# """ | |
# :param x: img of size (bs, c, h, w) | |
# :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) | |
# """ | |
# bs, nc, h, w = x.shape | |
# | |
# # number of crops in image | |
# Ly = (h - kernel_size[0]) // stride[0] + 1 | |
# Lx = (w - kernel_size[1]) // stride[1] + 1 | |
# | |
# if uf == 1 and df == 1: | |
# fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) | |
# unfold = torch.nn.Unfold(**fold_params) | |
# | |
# fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) | |
# | |
# weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) | |
# normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap | |
# weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) | |
# | |
# elif uf > 1 and df == 1: | |
# fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) | |
# unfold = torch.nn.Unfold(**fold_params) | |
# | |
# fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), | |
# dilation=1, padding=0, | |
# stride=(stride[0] * uf, stride[1] * uf)) | |
# fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) | |
# | |
# weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) | |
# normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap | |
# weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) | |
# | |
# elif df > 1 and uf == 1: | |
# fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) | |
# unfold = torch.nn.Unfold(**fold_params) | |
# | |
# fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), | |
# dilation=1, padding=0, | |
# stride=(stride[0] // df, stride[1] // df)) | |
# fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) | |
# | |
# weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) | |
# normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap | |
# weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) | |
# | |
# else: | |
# raise NotImplementedError | |
# | |
# return fold, unfold, normalization, weighting | |
# | |
# @torch.no_grad() | |
# def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, | |
# cond_key=None, return_original_cond=False, bs=None, uncond=0.05): | |
# x = super().get_input(batch, k) | |
# if bs is not None: | |
# x = x[:bs] | |
# x = x.to(self.device) | |
# encoder_posterior = self.encode_first_stage(x) | |
# z = self.get_first_stage_encoding(encoder_posterior).detach() | |
# cond_key = cond_key or self.cond_stage_key | |
# xc = super().get_input(batch, cond_key) | |
# if bs is not None: | |
# xc["c_crossattn"] = xc["c_crossattn"][:bs] | |
# xc["c_concat"] = xc["c_concat"][:bs] | |
# cond = {} | |
# | |
# # To support classifier-free guidance, randomly drop out only text conditioning 5%, only image conditioning 5%, and both 5%. | |
# random = torch.rand(x.size(0), device=x.device) | |
# prompt_mask = rearrange(random < 2 * uncond, "n -> n 1 1") | |
# input_mask = 1 - rearrange((random >= uncond).float() * (random < 3 * uncond).float(), "n -> n 1 1 1") | |
# | |
# null_prompt = self.get_learned_conditioning([""]) | |
# cond["c_crossattn"] = [torch.where(prompt_mask, null_prompt, self.get_learned_conditioning(xc["c_crossattn"]).detach())] | |
# cond["c_concat"] = [input_mask * self.encode_first_stage((xc["c_concat"].to(self.device))).mode().detach()] | |
# | |
# out = [z, cond] | |
# if return_first_stage_outputs: | |
# xrec = self.decode_first_stage(z) | |
# out.extend([x, xrec]) | |
# if return_original_cond: | |
# out.append(xc) | |
# return out | |
# | |
# @torch.no_grad() | |
# def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): | |
# if predict_cids: | |
# if z.dim() == 4: | |
# z = torch.argmax(z.exp(), dim=1).long() | |
# z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) | |
# z = rearrange(z, 'b h w c -> b c h w').contiguous() | |
# | |
# z = 1. / self.scale_factor * z | |
# | |
# if hasattr(self, "split_input_params"): | |
# if self.split_input_params["patch_distributed_vq"]: | |
# ks = self.split_input_params["ks"] # eg. (128, 128) | |
# stride = self.split_input_params["stride"] # eg. (64, 64) | |
# uf = self.split_input_params["vqf"] | |
# bs, nc, h, w = z.shape | |
# if ks[0] > h or ks[1] > w: | |
# ks = (min(ks[0], h), min(ks[1], w)) | |
# print("reducing Kernel") | |
# | |
# if stride[0] > h or stride[1] > w: | |
# stride = (min(stride[0], h), min(stride[1], w)) | |
# print("reducing stride") | |
# | |
# fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) | |
# | |
# z = unfold(z) # (bn, nc * prod(**ks), L) | |
# # 1. Reshape to img shape | |
# z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) | |
# | |
# # 2. apply model loop over last dim | |
# if isinstance(self.first_stage_model, VQModelInterface): | |
# output_list = [self.first_stage_model.decode(z[:, :, :, :, i], | |
# force_not_quantize=predict_cids or force_not_quantize) | |
# for i in range(z.shape[-1])] | |
# else: | |
# | |
# output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) | |
# for i in range(z.shape[-1])] | |
# | |
# o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) | |
# o = o * weighting | |
# # Reverse 1. reshape to img shape | |
# o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) | |
# # stitch crops together | |
# decoded = fold(o) | |
# decoded = decoded / normalization # norm is shape (1, 1, h, w) | |
# return decoded | |
# else: | |
# if isinstance(self.first_stage_model, VQModelInterface): | |
# return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) | |
# else: | |
# return self.first_stage_model.decode(z) | |
# | |
# else: | |
# if isinstance(self.first_stage_model, VQModelInterface): | |
# return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) | |
# else: | |
# return self.first_stage_model.decode(z) | |
# | |
# # same as above but without decorator | |
# def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): | |
# if predict_cids: | |
# if z.dim() == 4: | |
# z = torch.argmax(z.exp(), dim=1).long() | |
# z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) | |
# z = rearrange(z, 'b h w c -> b c h w').contiguous() | |
# | |
# z = 1. / self.scale_factor * z | |
# | |
# if hasattr(self, "split_input_params"): | |
# if self.split_input_params["patch_distributed_vq"]: | |
# ks = self.split_input_params["ks"] # eg. (128, 128) | |
# stride = self.split_input_params["stride"] # eg. (64, 64) | |
# uf = self.split_input_params["vqf"] | |
# bs, nc, h, w = z.shape | |
# if ks[0] > h or ks[1] > w: | |
# ks = (min(ks[0], h), min(ks[1], w)) | |
# print("reducing Kernel") | |
# | |
# if stride[0] > h or stride[1] > w: | |
# stride = (min(stride[0], h), min(stride[1], w)) | |
# print("reducing stride") | |
# | |
# fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) | |
# | |
# z = unfold(z) # (bn, nc * prod(**ks), L) | |
# # 1. Reshape to img shape | |
# z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) | |
# | |
# # 2. apply model loop over last dim | |
# if isinstance(self.first_stage_model, VQModelInterface): | |
# output_list = [self.first_stage_model.decode(z[:, :, :, :, i], | |
# force_not_quantize=predict_cids or force_not_quantize) | |
# for i in range(z.shape[-1])] | |
# else: | |
# | |
# output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) | |
# for i in range(z.shape[-1])] | |
# | |
# o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) | |
# o = o * weighting | |
# # Reverse 1. reshape to img shape | |
# o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) | |
# # stitch crops together | |
# decoded = fold(o) | |
# decoded = decoded / normalization # norm is shape (1, 1, h, w) | |
# return decoded | |
# else: | |
# if isinstance(self.first_stage_model, VQModelInterface): | |
# return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) | |
# else: | |
# return self.first_stage_model.decode(z) | |
# | |
# else: | |
# if isinstance(self.first_stage_model, VQModelInterface): | |
# return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) | |
# else: | |
# return self.first_stage_model.decode(z) | |
# | |
# @torch.no_grad() | |
# def encode_first_stage(self, x): | |
# if hasattr(self, "split_input_params"): | |
# if self.split_input_params["patch_distributed_vq"]: | |
# ks = self.split_input_params["ks"] # eg. (128, 128) | |
# stride = self.split_input_params["stride"] # eg. (64, 64) | |
# df = self.split_input_params["vqf"] | |
# self.split_input_params['original_image_size'] = x.shape[-2:] | |
# bs, nc, h, w = x.shape | |
# if ks[0] > h or ks[1] > w: | |
# ks = (min(ks[0], h), min(ks[1], w)) | |
# print("reducing Kernel") | |
# | |
# if stride[0] > h or stride[1] > w: | |
# stride = (min(stride[0], h), min(stride[1], w)) | |
# print("reducing stride") | |
# | |
# fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df) | |
# z = unfold(x) # (bn, nc * prod(**ks), L) | |
# # Reshape to img shape | |
# z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) | |
# | |
# output_list = [self.first_stage_model.encode(z[:, :, :, :, i]) | |
# for i in range(z.shape[-1])] | |
# | |
# o = torch.stack(output_list, axis=-1) | |
# o = o * weighting | |
# | |
# # Reverse reshape to img shape | |
# o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) | |
# # stitch crops together | |
# decoded = fold(o) | |
# decoded = decoded / normalization | |
# return decoded | |
# | |
# else: | |
# return self.first_stage_model.encode(x) | |
# else: | |
# return self.first_stage_model.encode(x) | |
# | |
# def shared_step(self, batch, **kwargs): | |
# x, c = self.get_input(batch, self.first_stage_key) | |
# loss = self(x, c) | |
# return loss | |
# | |
# def forward(self, x, c, *args, **kwargs): | |
# t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() | |
# if self.model.conditioning_key is not None: | |
# assert c is not None | |
# if self.cond_stage_trainable: | |
# c = self.get_learned_conditioning(c) | |
# if self.shorten_cond_schedule: # TODO: drop this option | |
# tc = self.cond_ids[t].to(self.device) | |
# c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) | |
# return self.p_losses(x, c, t, *args, **kwargs) | |
# | |
# def apply_model(self, x_noisy, t, cond, return_ids=False): | |
# | |
# if isinstance(cond, dict): | |
# # hybrid case, cond is expected to be a dict | |
# pass | |
# else: | |
# if not isinstance(cond, list): | |
# cond = [cond] | |
# key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' | |
# cond = {key: cond} | |
# | |
# if hasattr(self, "split_input_params"): | |
# assert len(cond) == 1 # todo can only deal with one conditioning atm | |
# assert not return_ids | |
# ks = self.split_input_params["ks"] # eg. (128, 128) | |
# stride = self.split_input_params["stride"] # eg. (64, 64) | |
# | |
# h, w = x_noisy.shape[-2:] | |
# | |
# fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride) | |
# | |
# z = unfold(x_noisy) # (bn, nc * prod(**ks), L) | |
# # Reshape to img shape | |
# z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) | |
# z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])] | |
# | |
# if self.cond_stage_key in ["image", "LR_image", "segmentation", | |
# 'bbox_img'] and self.model.conditioning_key: # todo check for completeness | |
# c_key = next(iter(cond.keys())) # get key | |
# c = next(iter(cond.values())) # get value | |
# assert (len(c) == 1) # todo extend to list with more than one elem | |
# c = c[0] # get element | |
# | |
# c = unfold(c) | |
# c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L ) | |
# | |
# cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])] | |
# | |
# elif self.cond_stage_key == 'coordinates_bbox': | |
# assert 'original_image_size' in self.split_input_params, 'BoundingBoxRescaling is missing original_image_size' | |
# | |
# # assuming padding of unfold is always 0 and its dilation is always 1 | |
# n_patches_per_row = int((w - ks[0]) / stride[0] + 1) | |
# full_img_h, full_img_w = self.split_input_params['original_image_size'] | |
# # as we are operating on latents, we need the factor from the original image size to the | |
# # spatial latent size to properly rescale the crops for regenerating the bbox annotations | |
# num_downs = self.first_stage_model.encoder.num_resolutions - 1 | |
# rescale_latent = 2 ** (num_downs) | |
# | |
# # get top left positions of patches as conforming for the bbbox tokenizer, therefore we | |
# # need to rescale the tl patch coordinates to be in between (0,1) | |
# tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w, | |
# rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h) | |
# for patch_nr in range(z.shape[-1])] | |
# | |
# # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w) | |
# patch_limits = [(x_tl, y_tl, | |
# rescale_latent * ks[0] / full_img_w, | |
# rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates] | |
# # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates] | |
# | |
# # tokenize crop coordinates for the bounding boxes of the respective patches | |
# patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device) | |
# for bbox in patch_limits] # list of length l with tensors of shape (1, 2) | |
# print(patch_limits_tknzd[0].shape) | |
# # cut tknzd crop position from conditioning | |
# assert isinstance(cond, dict), 'cond must be dict to be fed into model' | |
# cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device) | |
# print(cut_cond.shape) | |
# | |
# adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd]) | |
# adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n') | |
# print(adapted_cond.shape) | |
# adapted_cond = self.get_learned_conditioning(adapted_cond) | |
# print(adapted_cond.shape) | |
# adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1]) | |
# print(adapted_cond.shape) | |
# | |
# cond_list = [{'c_crossattn': [e]} for e in adapted_cond] | |
# | |
# else: | |
# cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient | |
# | |
# # apply model by loop over crops | |
# output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])] | |
# assert not isinstance(output_list[0], | |
# tuple) # todo cant deal with multiple model outputs check this never happens | |
# | |
# o = torch.stack(output_list, axis=-1) | |
# o = o * weighting | |
# # Reverse reshape to img shape | |
# o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) | |
# # stitch crops together | |
# x_recon = fold(o) / normalization | |
# | |
# else: | |
# x_recon = self.model(x_noisy, t, **cond) | |
# | |
# if isinstance(x_recon, tuple) and not return_ids: | |
# return x_recon[0] | |
# else: | |
# return x_recon | |
# | |
# def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
# return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ | |
# extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
# | |
# def _prior_bpd(self, x_start): | |
# """ | |
# Get the prior KL term for the variational lower-bound, measured in | |
# bits-per-dim. | |
# This term can't be optimized, as it only depends on the encoder. | |
# :param x_start: the [N x C x ...] tensor of inputs. | |
# :return: a batch of [N] KL values (in bits), one per batch element. | |
# """ | |
# batch_size = x_start.shape[0] | |
# t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) | |
# qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) | |
# kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) | |
# return mean_flat(kl_prior) / np.log(2.0) | |
# | |
# def p_losses(self, x_start, cond, t, noise=None): | |
# noise = default(noise, lambda: torch.randn_like(x_start)) | |
# x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
# model_output = self.apply_model(x_noisy, t, cond) | |
# | |
# loss_dict = {} | |
# prefix = 'train' if self.training else 'val' | |
# | |
# if self.parameterization == "x0": | |
# target = x_start | |
# elif self.parameterization == "eps": | |
# target = noise | |
# else: | |
# raise NotImplementedError() | |
# | |
# loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) | |
# loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) | |
# | |
# logvar_t = self.logvar[t].to(self.device) | |
# loss = loss_simple / torch.exp(logvar_t) + logvar_t | |
# # loss = loss_simple / torch.exp(self.logvar) + self.logvar | |
# if self.learn_logvar: | |
# loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) | |
# loss_dict.update({'logvar': self.logvar.data.mean()}) | |
# | |
# loss = self.l_simple_weight * loss.mean() | |
# | |
# loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) | |
# loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() | |
# loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) | |
# loss += (self.original_elbo_weight * loss_vlb) | |
# loss_dict.update({f'{prefix}/loss': loss}) | |
# | |
# return loss, loss_dict | |
# | |
# def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, | |
# return_x0=False, score_corrector=None, corrector_kwargs=None): | |
# t_in = t | |
# model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) | |
# | |
# if score_corrector is not None: | |
# assert self.parameterization == "eps" | |
# model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) | |
# | |
# if return_codebook_ids: | |
# model_out, logits = model_out | |
# | |
# if self.parameterization == "eps": | |
# x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
# elif self.parameterization == "x0": | |
# x_recon = model_out | |
# else: | |
# raise NotImplementedError() | |
# | |
# if clip_denoised: | |
# x_recon.clamp_(-1., 1.) | |
# if quantize_denoised: | |
# x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) | |
# model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
# if return_codebook_ids: | |
# return model_mean, posterior_variance, posterior_log_variance, logits | |
# elif return_x0: | |
# return model_mean, posterior_variance, posterior_log_variance, x_recon | |
# else: | |
# return model_mean, posterior_variance, posterior_log_variance | |
# | |
# @torch.no_grad() | |
# def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, | |
# return_codebook_ids=False, quantize_denoised=False, return_x0=False, | |
# temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): | |
# b, *_, device = *x.shape, x.device | |
# outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, | |
# return_codebook_ids=return_codebook_ids, | |
# quantize_denoised=quantize_denoised, | |
# return_x0=return_x0, | |
# score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) | |
# if return_codebook_ids: | |
# raise DeprecationWarning("Support dropped.") | |
# model_mean, _, model_log_variance, logits = outputs | |
# elif return_x0: | |
# model_mean, _, model_log_variance, x0 = outputs | |
# else: | |
# model_mean, _, model_log_variance = outputs | |
# | |
# noise = noise_like(x.shape, device, repeat_noise) * temperature | |
# if noise_dropout > 0.: | |
# noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
# # no noise when t == 0 | |
# nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
# | |
# if return_codebook_ids: | |
# return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) | |
# if return_x0: | |
# return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 | |
# else: | |
# return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
# | |
# @torch.no_grad() | |
# def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, | |
# img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., | |
# score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, | |
# log_every_t=None): | |
# if not log_every_t: | |
# log_every_t = self.log_every_t | |
# timesteps = self.num_timesteps | |
# if batch_size is not None: | |
# b = batch_size if batch_size is not None else shape[0] | |
# shape = [batch_size] + list(shape) | |
# else: | |
# b = batch_size = shape[0] | |
# if x_T is None: | |
# img = torch.randn(shape, device=self.device) | |
# else: | |
# img = x_T | |
# intermediates = [] | |
# if cond is not None: | |
# if isinstance(cond, dict): | |
# cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else | |
# [x[:batch_size] for x in cond[key]] for key in cond} | |
# else: | |
# cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] | |
# | |
# if start_T is not None: | |
# timesteps = min(timesteps, start_T) | |
# iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', | |
# total=timesteps) if verbose else reversed( | |
# range(0, timesteps)) | |
# if type(temperature) == float: | |
# temperature = [temperature] * timesteps | |
# | |
# for i in iterator: | |
# ts = torch.full((b,), i, device=self.device, dtype=torch.long) | |
# if self.shorten_cond_schedule: | |
# assert self.model.conditioning_key != 'hybrid' | |
# tc = self.cond_ids[ts].to(cond.device) | |
# cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
# | |
# img, x0_partial = self.p_sample(img, cond, ts, | |
# clip_denoised=self.clip_denoised, | |
# quantize_denoised=quantize_denoised, return_x0=True, | |
# temperature=temperature[i], noise_dropout=noise_dropout, | |
# score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) | |
# if mask is not None: | |
# assert x0 is not None | |
# img_orig = self.q_sample(x0, ts) | |
# img = img_orig * mask + (1. - mask) * img | |
# | |
# if i % log_every_t == 0 or i == timesteps - 1: | |
# intermediates.append(x0_partial) | |
# if callback: | |
# callback(i) | |
# if img_callback: | |
# img_callback(img, i) | |
# return img, intermediates | |
# | |
# @torch.no_grad() | |
# def p_sample_loop(self, cond, shape, return_intermediates=False, | |
# x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, | |
# mask=None, x0=None, img_callback=None, start_T=None, | |
# log_every_t=None): | |
# | |
# if not log_every_t: | |
# log_every_t = self.log_every_t | |
# device = self.betas.device | |
# b = shape[0] | |
# if x_T is None: | |
# img = torch.randn(shape, device=device) | |
# else: | |
# img = x_T | |
# | |
# intermediates = [img] | |
# if timesteps is None: | |
# timesteps = self.num_timesteps | |
# | |
# if start_T is not None: | |
# timesteps = min(timesteps, start_T) | |
# iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( | |
# range(0, timesteps)) | |
# | |
# if mask is not None: | |
# assert x0 is not None | |
# assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match | |
# | |
# for i in iterator: | |
# ts = torch.full((b,), i, device=device, dtype=torch.long) | |
# if self.shorten_cond_schedule: | |
# assert self.model.conditioning_key != 'hybrid' | |
# tc = self.cond_ids[ts].to(cond.device) | |
# cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
# | |
# img = self.p_sample(img, cond, ts, | |
# clip_denoised=self.clip_denoised, | |
# quantize_denoised=quantize_denoised) | |
# if mask is not None: | |
# img_orig = self.q_sample(x0, ts) | |
# img = img_orig * mask + (1. - mask) * img | |
# | |
# if i % log_every_t == 0 or i == timesteps - 1: | |
# intermediates.append(img) | |
# if callback: | |
# callback(i) | |
# if img_callback: | |
# img_callback(img, i) | |
# | |
# if return_intermediates: | |
# return img, intermediates | |
# return img | |
# | |
# @torch.no_grad() | |
# def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, | |
# verbose=True, timesteps=None, quantize_denoised=False, | |
# mask=None, x0=None, shape=None,**kwargs): | |
# if shape is None: | |
# shape = (batch_size, self.channels, self.image_size, self.image_size) | |
# if cond is not None: | |
# if isinstance(cond, dict): | |
# cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else | |
# [x[:batch_size] for x in cond[key]] for key in cond} | |
# else: | |
# cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] | |
# return self.p_sample_loop(cond, | |
# shape, | |
# return_intermediates=return_intermediates, x_T=x_T, | |
# verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, | |
# mask=mask, x0=x0) | |
# | |
# @torch.no_grad() | |
# def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs): | |
# | |
# if ddim: | |
# ddim_sampler = DDIMSampler(self) | |
# shape = (self.channels, self.image_size, self.image_size) | |
# samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size, | |
# shape,cond,verbose=False,**kwargs) | |
# | |
# else: | |
# samples, intermediates = self.sample(cond=cond, batch_size=batch_size, | |
# return_intermediates=True,**kwargs) | |
# | |
# return samples, intermediates | |
# | |
# | |
# @torch.no_grad() | |
# def log_images(self, batch, N=4, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, | |
# quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=False, | |
# plot_diffusion_rows=False, **kwargs): | |
# | |
# use_ddim = False | |
# | |
# log = {} | |
# z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, | |
# return_first_stage_outputs=True, | |
# force_c_encode=True, | |
# return_original_cond=True, | |
# bs=N, uncond=0) | |
# N = min(x.shape[0], N) | |
# n_row = min(x.shape[0], n_row) | |
# log["inputs"] = x | |
# log["reals"] = xc["c_concat"] | |
# log["reconstruction"] = xrec | |
# if self.model.conditioning_key is not None: | |
# if hasattr(self.cond_stage_model, "decode"): | |
# xc = self.cond_stage_model.decode(c) | |
# log["conditioning"] = xc | |
# elif self.cond_stage_key in ["caption"]: | |
# xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"]) | |
# log["conditioning"] = xc | |
# elif self.cond_stage_key == 'class_label': | |
# xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) | |
# log['conditioning'] = xc | |
# elif isimage(xc): | |
# log["conditioning"] = xc | |
# if ismap(xc): | |
# log["original_conditioning"] = self.to_rgb(xc) | |
# | |
# if plot_diffusion_rows: | |
# # get diffusion row | |
# diffusion_row = [] | |
# z_start = z[:n_row] | |
# for t in range(self.num_timesteps): | |
# if t % self.log_every_t == 0 or t == self.num_timesteps - 1: | |
# t = repeat(torch.tensor([t]), '1 -> b', b=n_row) | |
# t = t.to(self.device).long() | |
# noise = torch.randn_like(z_start) | |
# z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) | |
# diffusion_row.append(self.decode_first_stage(z_noisy)) | |
# | |
# diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W | |
# diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') | |
# diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') | |
# diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) | |
# log["diffusion_row"] = diffusion_grid | |
# | |
# if sample: | |
# # get denoise row | |
# with self.ema_scope("Plotting"): | |
# samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, | |
# ddim_steps=ddim_steps,eta=ddim_eta) | |
# # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) | |
# x_samples = self.decode_first_stage(samples) | |
# log["samples"] = x_samples | |
# if plot_denoise_rows: | |
# denoise_grid = self._get_denoise_row_from_list(z_denoise_row) | |
# log["denoise_row"] = denoise_grid | |
# | |
# if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( | |
# self.first_stage_model, IdentityFirstStage): | |
# # also display when quantizing x0 while sampling | |
# with self.ema_scope("Plotting Quantized Denoised"): | |
# samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, | |
# ddim_steps=ddim_steps,eta=ddim_eta, | |
# quantize_denoised=True) | |
# # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, | |
# # quantize_denoised=True) | |
# x_samples = self.decode_first_stage(samples.to(self.device)) | |
# log["samples_x0_quantized"] = x_samples | |
# | |
# if inpaint: | |
# # make a simple center square | |
# h, w = z.shape[2], z.shape[3] | |
# mask = torch.ones(N, h, w).to(self.device) | |
# # zeros will be filled in | |
# mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. | |
# mask = mask[:, None, ...] | |
# with self.ema_scope("Plotting Inpaint"): | |
# | |
# samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta, | |
# ddim_steps=ddim_steps, x0=z[:N], mask=mask) | |
# x_samples = self.decode_first_stage(samples.to(self.device)) | |
# log["samples_inpainting"] = x_samples | |
# log["mask"] = mask | |
# | |
# # outpaint | |
# with self.ema_scope("Plotting Outpaint"): | |
# samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta, | |
# ddim_steps=ddim_steps, x0=z[:N], mask=mask) | |
# x_samples = self.decode_first_stage(samples.to(self.device)) | |
# log["samples_outpainting"] = x_samples | |
# | |
# if plot_progressive_rows: | |
# with self.ema_scope("Plotting Progressives"): | |
# img, progressives = self.progressive_denoising(c, | |
# shape=(self.channels, self.image_size, self.image_size), | |
# batch_size=N) | |
# prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") | |
# log["progressive_row"] = prog_row | |
# | |
# if return_keys: | |
# if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: | |
# return log | |
# else: | |
# return {key: log[key] for key in return_keys} | |
# return log | |
# | |
# def configure_optimizers(self): | |
# lr = self.learning_rate | |
# params = list(self.model.parameters()) | |
# if self.cond_stage_trainable: | |
# print(f"{self.__class__.__name__}: Also optimizing conditioner params!") | |
# params = params + list(self.cond_stage_model.parameters()) | |
# if self.learn_logvar: | |
# print('Diffusion model optimizing logvar') | |
# params.append(self.logvar) | |
# opt = torch.optim.AdamW(params, lr=lr) | |
# if self.use_scheduler: | |
# assert 'target' in self.scheduler_config | |
# scheduler = instantiate_from_config(self.scheduler_config) | |
# | |
# print("Setting up LambdaLR scheduler...") | |
# scheduler = [ | |
# { | |
# 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), | |
# 'interval': 'step', | |
# 'frequency': 1 | |
# }] | |
# return [opt], scheduler | |
# return opt | |
# | |
# @torch.no_grad() | |
# def to_rgb(self, x): | |
# x = x.float() | |
# if not hasattr(self, "colorize"): | |
# self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) | |
# x = nn.functional.conv2d(x, weight=self.colorize) | |
# x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. | |
# return x | |
# | |
# | |
# class DiffusionWrapper(pl.LightningModule): | |
# def __init__(self, diff_model_config, conditioning_key): | |
# super().__init__() | |
# self.diffusion_model = instantiate_from_config(diff_model_config) | |
# self.conditioning_key = conditioning_key | |
# assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm'] | |
# | |
# def forward(self, x, t, c_concat: list = None, c_crossattn: list = None): | |
# if self.conditioning_key is None: | |
# out = self.diffusion_model(x, t) | |
# elif self.conditioning_key == 'concat': | |
# xc = torch.cat([x] + c_concat, dim=1) | |
# out = self.diffusion_model(xc, t) | |
# elif self.conditioning_key == 'crossattn': | |
# cc = torch.cat(c_crossattn, 1) | |
# out = self.diffusion_model(x, t, context=cc) | |
# elif self.conditioning_key == 'hybrid': | |
# xc = torch.cat([x] + c_concat, dim=1) | |
# cc = torch.cat(c_crossattn, 1) | |
# out = self.diffusion_model(xc, t, context=cc) | |
# elif self.conditioning_key == 'adm': | |
# cc = c_crossattn[0] | |
# out = self.diffusion_model(x, t, y=cc) | |
# else: | |
# raise NotImplementedError() | |
# | |
# return out | |
# | |
# | |
# class Layout2ImgDiffusion(LatentDiffusion): | |
# # TODO: move all layout-specific hacks to this class | |
# def __init__(self, cond_stage_key, *args, **kwargs): | |
# assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' | |
# super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs) | |
# | |
# def log_images(self, batch, N=8, *args, **kwargs): | |
# logs = super().log_images(*args, batch=batch, N=N, **kwargs) | |
# | |
# key = 'train' if self.training else 'validation' | |
# dset = self.trainer.datamodule.datasets[key] | |
# mapper = dset.conditional_builders[self.cond_stage_key] | |
# | |
# bbox_imgs = [] | |
# map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno)) | |
# for tknzd_bbox in batch[self.cond_stage_key][:N]: | |
# bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256)) | |
# bbox_imgs.append(bboximg) | |
# | |
# cond_img = torch.stack(bbox_imgs, dim=0) | |
# logs['bbox_image'] = cond_img | |
# return logs | |