Moiz commited on
Commit
65575bf
·
1 Parent(s): c1b881b

added poster links

Browse files
Files changed (3) hide show
  1. .gitignore +1 -0
  2. MovieDatabase.csv +0 -0
  3. database.py +7 -6
.gitignore CHANGED
@@ -1,3 +1,4 @@
1
  .DS_Store
2
  .env
3
  .DS_Store
 
 
1
  .DS_Store
2
  .env
3
  .DS_Store
4
+ MovieDatabase.csv
MovieDatabase.csv CHANGED
The diff for this file is too large to render. See raw diff
 
database.py CHANGED
@@ -1,6 +1,7 @@
1
  import requests
2
  import pandas as pd
3
  import os
 
4
 
5
  # Load CSV
6
  try:
@@ -14,7 +15,7 @@ except FileNotFoundError:
14
  column_names = [
15
  "id", "Title", "Year", "Rated", "Runtime", "Genre1", "Genre2", "Genre3",
16
  "Director", "Writer", "Plot", "Awards", "IMDb", "Rotten Tomatoes",
17
- "Metascore", "IMDb_votes", "Type", "BoxOffice" #add musab moiz udisha columns for personal rating. i added that manually in the csv
18
  ]
19
  database = pd.DataFrame(columns=column_names)
20
 
@@ -30,8 +31,7 @@ def get_movie(movie_id):
30
  if data.get("Response") == "True":
31
  # Extract genres
32
  genres = (data.get("Genre") or "").split(", ")
33
- genre1, genre2, genre3 = genres[:3] if len(genres) >= 3 else genres + [None] * (3 - len(genres)
34
- )
35
  # Append the movie data to the DataFrame
36
  database.loc[len(database)] = [
37
  movie_id,
@@ -50,6 +50,7 @@ def get_movie(movie_id):
50
  data.get("imdbVotes"),
51
  data.get("Type"),
52
  data.get("BoxOffice"),
 
53
  ]
54
  else:
55
  print(f"Error in API response for movie_id {movie_id}: {data.get('Error')}")
@@ -58,12 +59,12 @@ def get_movie(movie_id):
58
  except Exception as e:
59
  print(f"Exception occurred for movie_id {movie_id}: {e}")
60
 
61
- # Loop through movie IDs in the CSV and fetch details
62
- for i in range(len(df)):
63
  movie_id = df.iloc[i, 0]
64
  get_movie(movie_id)
65
 
66
  # Save the DataFrame to a CSV file
67
- output_file = '/Users/moizpro/Desktop/MoviesRecommender/MovieRecommender'
68
  database.to_csv(output_file, index=False)
69
  print(f"Movie database saved to {output_file}")
 
1
  import requests
2
  import pandas as pd
3
  import os
4
+ from tqdm import tqdm # Import tqdm for progress bar
5
 
6
  # Load CSV
7
  try:
 
15
  column_names = [
16
  "id", "Title", "Year", "Rated", "Runtime", "Genre1", "Genre2", "Genre3",
17
  "Director", "Writer", "Plot", "Awards", "IMDb", "Rotten Tomatoes",
18
+ "Metascore", "IMDb_votes", "Type", "BoxOffice", "Poster" # Add Musab, Moiz, Udisha columns for personal rating if needed
19
  ]
20
  database = pd.DataFrame(columns=column_names)
21
 
 
31
  if data.get("Response") == "True":
32
  # Extract genres
33
  genres = (data.get("Genre") or "").split(", ")
34
+ genre1, genre2, genre3 = genres[:3] if len(genres) >= 3 else genres + [None] * (3 - len(genres))
 
35
  # Append the movie data to the DataFrame
36
  database.loc[len(database)] = [
37
  movie_id,
 
50
  data.get("imdbVotes"),
51
  data.get("Type"),
52
  data.get("BoxOffice"),
53
+ data.get("Poster"),
54
  ]
55
  else:
56
  print(f"Error in API response for movie_id {movie_id}: {data.get('Error')}")
 
59
  except Exception as e:
60
  print(f"Exception occurred for movie_id {movie_id}: {e}")
61
 
62
+ # Loop through movie IDs in the CSV and fetch details with a progress bar
63
+ for i in tqdm(range(len(df)), desc="Fetching movie details", unit="movie"):
64
  movie_id = df.iloc[i, 0]
65
  get_movie(movie_id)
66
 
67
  # Save the DataFrame to a CSV file
68
+ output_file = '/Users/moizpro/Desktop/MoviesRecommender/MovieRecommender/MovieDatabase.csv'
69
  database.to_csv(output_file, index=False)
70
  print(f"Movie database saved to {output_file}")