Upload 3 files
Browse files- dog.jpg +0 -0
- mujtaba_object_detection_code_export.py +132 -0
- plane.jpg +0 -0
dog.jpg
ADDED
![]() |
mujtaba_object_detection_code_export.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""mujtaba_object_detection_code_export.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1RgE9mbEiNBuPutxI86fIewscERKHyOr_
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install ultralytics datasets wandb gradio opencv-python Pillow captum torchvision --upgrade
|
11 |
+
|
12 |
+
import os
|
13 |
+
import cv2
|
14 |
+
import torch
|
15 |
+
import numpy as np
|
16 |
+
from ultralytics import YOLO
|
17 |
+
import wandb
|
18 |
+
import matplotlib.pyplot as plt
|
19 |
+
from datetime import datetime
|
20 |
+
from google.colab import userdata
|
21 |
+
|
22 |
+
wandb.login(key=userdata.get('WANDB'))
|
23 |
+
|
24 |
+
def setup_wandb():
|
25 |
+
wandb.init(project="Object-detection",
|
26 |
+
name=f"run_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
|
27 |
+
config={
|
28 |
+
"model": "yolov8n",
|
29 |
+
"dataset": "coco128",
|
30 |
+
"img_size": 640,
|
31 |
+
"batch_size": 8
|
32 |
+
})
|
33 |
+
|
34 |
+
def load_model():
|
35 |
+
model = YOLO("yolov8n.pt")
|
36 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
37 |
+
model.to(device)
|
38 |
+
return model
|
39 |
+
|
40 |
+
def train_model(model):
|
41 |
+
results = model.train(
|
42 |
+
data="coco128.yaml",
|
43 |
+
epochs=20,
|
44 |
+
imgsz=640,
|
45 |
+
batch=8,
|
46 |
+
device='0' if torch.cuda.is_available() else 'cpu',
|
47 |
+
patience=3,
|
48 |
+
save=True
|
49 |
+
)
|
50 |
+
return model
|
51 |
+
|
52 |
+
def validate_model(model):
|
53 |
+
metrics = model.val()
|
54 |
+
wandb.log({
|
55 |
+
"val/mAP50": metrics.box.map50,
|
56 |
+
"val/mAP50-95": metrics.box.map,
|
57 |
+
"val/precision": metrics.box.mp,
|
58 |
+
"val/recall": metrics.box.mr
|
59 |
+
})
|
60 |
+
return metrics
|
61 |
+
|
62 |
+
def visualize_results(results, img_path):
|
63 |
+
img = cv2.imread(img_path)
|
64 |
+
if img is None:
|
65 |
+
raise ValueError(f"Failed to load image: {img_path}")
|
66 |
+
pred_img = results[0].plot()
|
67 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
|
68 |
+
ax1.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
69 |
+
ax1.axis('off')
|
70 |
+
ax2.imshow(cv2.cvtColor(pred_img, cv2.COLOR_BGR2RGB))
|
71 |
+
ax2.axis('off')
|
72 |
+
plt.savefig("detection_results.jpg")
|
73 |
+
plt.close()
|
74 |
+
return "detection_results.jpg"
|
75 |
+
|
76 |
+
def test_image(model, img_path="test_image.jpg"):
|
77 |
+
if not os.path.exists(img_path):
|
78 |
+
raise FileNotFoundError(f"Image not found: {img_path}")
|
79 |
+
results = model(img_path)
|
80 |
+
output_path = visualize_results(results, img_path)
|
81 |
+
wandb.log({
|
82 |
+
"test_results": wandb.Image(output_path),
|
83 |
+
"detections": results[0].boxes.cls.tolist(),
|
84 |
+
"confidences": results[0].boxes.conf.tolist()
|
85 |
+
})
|
86 |
+
return results
|
87 |
+
|
88 |
+
def webcam_demo(model):
|
89 |
+
try:
|
90 |
+
from google.colab.patches import cv2_imshow
|
91 |
+
cap = cv2.VideoCapture(0)
|
92 |
+
if not cap.isOpened():
|
93 |
+
print("Webcam not available - skipping demo")
|
94 |
+
return
|
95 |
+
print("Press 'q' to quit webcam demo")
|
96 |
+
while True:
|
97 |
+
ret, frame = cap.read()
|
98 |
+
if not ret:
|
99 |
+
break
|
100 |
+
results = model(frame)
|
101 |
+
annotated = results[0].plot()
|
102 |
+
cv2_imshow(annotated)
|
103 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
104 |
+
break
|
105 |
+
except Exception as e:
|
106 |
+
print(f"Webcam error: {e}")
|
107 |
+
finally:
|
108 |
+
cap.release()
|
109 |
+
cv2.destroyAllWindows()
|
110 |
+
|
111 |
+
def export_model():
|
112 |
+
trained_weights = "runs/detect/train/weights/best.pt"
|
113 |
+
model = YOLO(trained_weights)
|
114 |
+
model.export(format="torchscript")
|
115 |
+
wandb.save("best.torchscript")
|
116 |
+
|
117 |
+
def main():
|
118 |
+
setup_wandb()
|
119 |
+
model = load_model()
|
120 |
+
model = train_model(model)
|
121 |
+
validate_model(model)
|
122 |
+
test_image(model)
|
123 |
+
export_model()
|
124 |
+
wandb.finish()
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
main()
|
128 |
+
|
129 |
+
from google.colab import files
|
130 |
+
|
131 |
+
files.download("runs/detect/train/weights/best.torchscript")
|
132 |
+
|
plane.jpg
ADDED
![]() |