Spaces:
Runtime error
Runtime error
File size: 18,565 Bytes
1bc9b9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import torch
from torch import nn
import torch.nn.functional as F
#FIX
import config as CFG
from modules import TextEncoder, ProjectionHead, ImageEncoder
class PoemTextModel(nn.Module):
"""
Model predicting poem and text embeddings, and their similarities.
...
Attributes:
-----------
poem_encoder : TextEncoder
encoder used for extracting poem embeddings
text_encoder : TextEncoder
encoder used for extracting text embeddings
poem_projection: ProjectionHead
projection head used for poem embeddings (projects poem encoder output to shared embedding space)
text_projection: ProjectionHead
projection head used for text embeddings (projects text encoder output to shared embedding space)
temperature: float
used to scale the dot similarities
Methods:
--------
forward(batch):
returns poem and text embeddings of batch
similarity_scores(batch):
computes dot similarities of a batch of text-poem pair
predict(batch):
predicts the most similar poem idx for each text (using previous methods)
calculate_loss(batch):
computes contrastive (cross entropy) loss for both poems and texts.
save_current():
saves current model's encoders (if trainable) and projection heads.
"""
def __init__(
self,
poem_encoder_pretrained,
text_encoder_pretrained,
temperature=CFG.temperature,
poem_embedding=CFG.poem_embedding,
text_embedding=CFG.text_embedding,
):
"""
Initializes model's submodules
Parameters:
-----------
poem_encoder_pretrained: bool
whether or not to load a pretrained poem encoder.
text_encoder_pretrained: bool
whether or not to load a pretrained text encoder.
temperature: float, optional
used to scale the dot similarities
poem_embedding: int, optional
dim of poem encoder's encoding output before projection
text_embedding: int, optional
dim of text encoder's encoding output before projection
"""
super().__init__()
self.poem_encoder = TextEncoder(CFG.poem_encoder_model, CFG.poem_encoder_pretrained_name, pretrained=poem_encoder_pretrained, trainable= CFG.poem_encoder_trainable)
self.text_encoder = TextEncoder(CFG.text_encoder_model, CFG.text_encoder_pretrained_name, pretrained=text_encoder_pretrained, trainable= CFG.text_encoder_trainable)
self.poem_projection = ProjectionHead(embedding_dim=poem_embedding)
if CFG.poem_projection_load_path: # if provided, load projection weights from this path
self.poem_projection.load_state_dict(torch.load(CFG.poem_projection_load_path, map_location=CFG.device))
self.text_projection = ProjectionHead(embedding_dim=text_embedding)
if CFG.text_projection_load_path: # if provided, load projection weights from this path
self.text_projection.load_state_dict(torch.load(CFG.text_projection_load_path, map_location=CFG.device))
self.temperature = temperature
def forward(self, batch):
"""
returns poem and text embeddings of batch
Parameters:
-----------
batch: list of dict
input (containing poem-text pairs (encoded using the encoder's tokenizer) with keys 'beyt' and 'text')
Returns:
--------
poem and text embeddings of batch (each of shape (batch_size, projection_dim))
"""
beyts, texts = batch["beyt"], batch["text"]
# Getting Beyt and Text Features
poem_features = self.poem_encoder(
input_ids=beyts["input_ids"], attention_mask=beyts["attention_mask"]
)
text_features = self.text_encoder(
input_ids=texts["input_ids"], attention_mask=texts["attention_mask"]
)
# Getting Beyt and Text Embeddings (with same dimension)
poem_embeddings = self.poem_projection(poem_features)
text_embeddings = self.text_projection(text_features)
return poem_embeddings, text_embeddings
def similarity_scores(self, batch):
"""
computes dot similarities of a batch of text-poem pair
Parameters:
-----------
batch: list of dict
input (containing poem-text pairs (encoded using the encoder's tokenizer) with keys 'beyt' and 'text')
Returns:
--------
dot similarity of poem and text embeddings of batch (of shape (batch_size, batch_size))
"""
# Getting Beyt and Text Embeddings (with same dimension)
poem_embeddings, text_embeddings = self.forward(batch)
# Normalizing embeddings
poem_embeddings_n = F.normalize(poem_embeddings, p=2, dim=-1)
text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1)
# Computing dot / cosine similarity of the normalized embeddings
dot_similarity = text_embeddings_n @ poem_embeddings_n.T
return dot_similarity # (batch_size, batch_size) first dim is texts, second dim is poems for each text
def predict(self, batch):
"""
predicts the most similar poem (idx) for each text (using previous methods)
Parameters:
-----------
batch: list of dict
input (containing poem-text pairs (encoded using the encoder's tokenizer) with keys 'beyt' and 'text')
Returns:
--------
index of poem predicted for each text (of shape (batch_size))
"""
dot_similarity = self.similarity_scores(batch)
# Getting argmax in first dimension of the dot-similarities to predict index of the most similar poem for each text
return torch.argmax(dot_similarity, dim=1)
def calculate_loss(self, poem_embeddings, text_embeddings):
"""
computes contrastive (cross entropy) loss for both poems and texts.
Parameters:
-----------
poem_embeddings: of shape (batch_size, projection_dim)
output embeddings of poem projection head
text_embeddings: of shape (batch_size, projection_dim)
output embeddings of text projection head
Returns:
--------
average of the loss computed from inputs
"""
# dot similarity of the embeddings scaled by temperature (logits)
logits = (text_embeddings @ poem_embeddings.T) / self.temperature
# computing targets for the cross entropy loss to compare with logits.
# each embedding's similarity is computed with itself and then added,
# scaled by the temperature parameter, and normalized into a probability distribution via a softmax
poems_similarity = poem_embeddings @ poem_embeddings.T
texts_similarity = text_embeddings @ text_embeddings.T
targets = F.softmax(
(poems_similarity + texts_similarity) / 2 * self.temperature, dim=-1
)
# taking cross entropy loss in both dimensions: once for texts and once for poems
texts_loss = cross_entropy(logits, targets, reduction='none')
poems_loss = cross_entropy(logits.T, targets.T, reduction='none')
loss = (poems_loss + texts_loss) / 2.0 # average of losses. shape: (batch_size)
return loss.mean()
def save_current(self):
"""
saves current model's encoders (if trainable) and projection heads.
"""
if CFG.text_encoder_trainable:
self.text_encoder.model.save_pretrained(CFG.text_encoder_save_path)
if CFG.poem_encoder_trainable:
self.poem_encoder.model.save_pretrained(CFG.poem_encoder_save_path)
torch.save(self.text_projection.state_dict(), CFG.text_projection_save_path)
torch.save(self.poem_projection.state_dict(), CFG.poem_projection_save_path)
class CLIPModel(nn.Module):
"""
Model predicting poem/text and image embeddings, and their similarities.
...
Attributes:
-----------
encoder : TextEncoder
encoder used for extracting poem/text embeddings
image_encoder : ImageEncoder
encoder used for extracting image embeddings
text_projection: ProjectionHead
projection head used for poem/text embeddings (projects text encoder output to shared embedding space)
image_projection: ProjectionHead
projection head used for image embeddings (projects image encoder output to shared embedding space)
temperature: float
used to scale the dot similarities
Methods:
--------
forward(batch):
returns poem/text and image embeddings of batch
similarity_scores(batch):
computes dot similarities of a batch of text-image pair
predict(batch):
predicts the most similar poem/text idx for each image (using previous methods)
calculate_loss(batch):
computes contrastive (cross entropy) loss for both poems/texts and images.
save_current():
saves current model's encoders (if trainable) and projection heads.
"""
def __init__(
self,
image_encoder_pretrained,
text_encoder_pretrained,
text_projection_trainable,
temperature=CFG.temperature,
image_embedding=CFG.image_embedding,
text_embedding=CFG.text_embedding,
is_image_poem_pair=True
):
"""
Initializes model's submodules
Parameters:
-----------
image_encoder_pretrained: bool
whether or not to load a pretrained image encoder.
text_encoder_pretrained: bool
whether or not to load a pretrained text encoder.
text_projection_trainable: bool
whether or not to train text projection
(since the text projection is frozen in our trainings unlike other projections of models)
temperature: float, optional
used to scale the dot similarities
image_embedding: int, optional
dim of image encoder's encoding output before projection
text_embedding: int, optional
dim of text encoder's encoding output before projection
is_image_poem_pair: bool, optional
if True, the text inputs to this model is poems and needs one of the poem encoders to predict embeddings with.
else it's a text that needs the encoders dedicated to text.
"""
super().__init__()
# Loading the encoders and their projections using configs
self.image_encoder = ImageEncoder(pretrained=image_encoder_pretrained, trainable=CFG.image_encoder_trainable)
if is_image_poem_pair:
self.encoder = TextEncoder(CFG.poem_encoder_model, CFG.poem_encoder_pretrained_name, pretrained=text_encoder_pretrained, trainable=CFG.poem_encoder_trainable)
self.text_projection = ProjectionHead(embedding_dim=text_embedding)
if CFG.poem_projection_load_path:
self.text_projection.load_state_dict(torch.load(CFG.poem_projection_load_path, map_location=CFG.device))
else:
self.encoder = TextEncoder(CFG.text_encoder_model, CFG.text_encoder_pretrained_name, pretrained=text_encoder_pretrained, trainable=CFG.text_encoder_trainable)
self.text_projection = ProjectionHead(embedding_dim=text_embedding)
if CFG.text_projection_load_path:
self.text_projection.load_state_dict(torch.load(CFG.text_projection_load_path, map_location=CFG.device))
self.image_projection = ProjectionHead(embedding_dim=image_embedding)
if CFG.image_projection_load_path:
self.image_projection.load_state_dict(torch.load(CFG.image_projection_load_path, map_location=CFG.device))
if not text_projection_trainable:
for p in self.text_projection.parameters():
p.requires_grad = False
self.text_projection_trainable = text_projection_trainable
self.is_image_poem_pair = is_image_poem_pair
self.temperature = temperature
def forward(self, batch):
"""
returns image and text/poem embeddings of batch
Parameters:
-----------
batch: list of dict
input (containing image-text/poem pairs (text/poem encoded using the encoder's tokenizer)
with keys 'image' and 'text')
Returns:
--------
poem/text and image embeddings of batch (each of shape (batch_size, projection_dim))
"""
image, texts = batch["image"], batch["text"]
# Getting Image and Text Features
image_features = self.image_encoder(batch["image"])
text_features = self.encoder(
input_ids=texts["input_ids"], attention_mask=texts["attention_mask"]
)
# Getting Image and Text Embeddings (with same dimension)
image_embeddings = self.image_projection(image_features)
text_embeddings = self.text_projection(text_features)
return image_embeddings, text_embeddings
def similarity_scores(self, batch):
"""
computes dot similarities of a batch of text/poem-image pair
Parameters:
-----------
batch: list of dict
input (containing image-text/poem pairs (text/poem encoded using the encoder's tokenizer)
with keys 'image' and 'text')
Returns:
--------
dot similarity of poem/text and image embeddings of batch (of shape (batch_size, batch_size))
"""
# Getting Image and Text Embeddings (with same dimension)
image_embeddings, text_embeddings = self.forward(batch)
# Normalizing embeddings
image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1)
text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1)
# Computing dot / cosine similarity of the normalized embeddings
dot_similarity = image_embeddings_n @ text_embeddings_n.T
return dot_similarity # (batch_size, batch_size) first dim is images, second dim is poems/texts for each image
def predict(self, batch):
"""
predicts the most similar poem/text (idx) for each image (using previous methods)
Parameters:
-----------
batch: list of dict
input (containing image-text/poem pairs (text/poem encoded using the encoder's tokenizer)
with keys 'image' and 'text')
Returns:
--------
index of poem/text predicted for each image (of shape (batch_size))
"""
dot_similarity = self.similarity_scores(batch)
# Getting argmax in first dimension of the dot-similarities
# to predict index of the most similar poem/text for each image
return torch.argmax(dot_similarity, dim=1)
def calculate_loss(self, image_embeddings, text_embeddings):
"""
computes contrastive (cross entropy) loss for both poems/texts and images.
Parameters:
-----------
image_embeddings: of shape (batch_size, projection_dim)
output embeddings of image projection head
text_embeddings: of shape (batch_size, projection_dim)
output embeddings of text projection head
Returns:
--------
average of the loss computed from inputs
"""
# dot similarity of the embeddings scaled by temperature (logits)
logits = (text_embeddings @ image_embeddings.T) / self.temperature
# computing targets for the cross entropy loss to compare with logits.
# each embedding's similarity is computed with itself and then averaged,
# scaled by the temperature parameter, and normalized into a probability distribution via a softmax
images_similarity = image_embeddings @ image_embeddings.T
texts_similarity = text_embeddings @ text_embeddings.T
targets = F.softmax(
(images_similarity + texts_similarity) / 2 * self.temperature, dim=-1
)
# taking cross entropy loss in both dimensions: once for texts and once for images
texts_loss = cross_entropy(logits, targets, reduction='none')
images_loss = cross_entropy(logits.T, targets.T, reduction='none')
loss = (images_loss + texts_loss) / 2.0 # average of losses. shape: (batch_size)
return loss.mean()
def save_current(self):
"""
saves current model's encoders and projection heads (if trainable).
"""
if self.is_image_poem_pair:
if CFG.poem_encoder_trainable:
self.encoder.model.save_pretrained(CFG.poem_encoder_save_path)
else:
if CFG.text_encoder_trainable:
self.encoder.model.save_pretrained(CFG.text_encoder_save_path)
if CFG.image_encoder_trainable:
torch.save(self.image_encoder.model.state_dict(), CFG.image_encoder_weights_save_path)
if self.text_projection_trainable:
torch.save(self.text_projection.state_dict(), CFG.text_projection_save_path)
torch.save(self.image_projection.state_dict(), CFG.image_projection_save_path)
def cross_entropy(preds, targets, reduction='none'):
"""
Computes cross_entropy of logits and targets using their last dimension
Parameters:
-----------
preds: tensor/numpy array
logits
targets: tensor/ numpy array
reduction: str, optional
if set to "mean", return loss mean across all dimensions.
if set to "none", return loss computed using last dim.
Returns:
--------
loss or loss average
"""
log_softmax = nn.LogSoftmax(dim=-1)
loss = (-targets * log_softmax(preds)).sum(1) # cross entropy loss
if reduction == "none":
return loss
elif reduction == "mean":
return loss.mean() |