File size: 6,878 Bytes
1bc9b9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
from torch import nn
import timm
import config as CFG


class TextEncoder(nn.Module):
    """
    Text/Poem encoder used in PoemTextModel and CLIPModel
    ...
    Attributes:
    -----------
    model : a torch.nn.Module model
        The image encoder model
    
    Methods:
    --------
        forward(x)
            returns model embeddings of x (batch of texts/poems) (of the CLS token)
        __init__()
            creates the encoder model using huggingface transformers,
            also freezes the model if it's not trainable.
    """
    def __init__(self, encoder_model, encoder_pretrained_name, pretrained, trainable):
        """
        creates the poem or text encoder model using transformers and loads weights from pretrained model if needed.
        Also freezes the model if it's not trainable.

            Parameters:
            -----------
            pretrained: bool
                if pretrained=True, get pretrained model's weights. else create a fresh untrained model.
            trainable: bool
                if trainable=False, the model's weights will be frozen.
            encoder_model: str
                image encoder model name used as input to get the right model from configs.
            encoder_pretrained_name: str
                image encoder model to get weights from. (not used when pretrained=False)  
        """
        super().__init__()

        if pretrained:
            self.model = CFG.encoders[encoder_model].from_pretrained(encoder_pretrained_name)
        else:
            self.model = CFG.encoders[encoder_model](config=CFG.configs[encoder_model]())
            
        for p in self.model.parameters():
            p.requires_grad = trainable

        # Using the CLS token hidden representation as the sentence's embedding
        self.target_token_idx = 0

    def forward(self, input_ids, attention_mask):
        """
        forwards and calculates embeddings of the input using attention mask.

            Parameters:
            -----------
            input_ids: input ids (output of tokenizer)
            attention masks: input masks (for example for padding, pad tokens will be masked)

            Returns:
            --------
            the embedding of the CLS (or target) token of the encoder's last hidden state
        """
        output = self.model(input_ids=input_ids, attention_mask=attention_mask)
        last_hidden_state = output.last_hidden_state
        return last_hidden_state[:, self.target_token_idx, :]



class ProjectionHead(nn.Module):
    """
    Projection head used to project embeddings from each encoder to a shared embedding space
    ...
    Attributes:
    -----------
    projection : torch.nn.Linear
        The main Dense projection (from encoder's embedding dim to shared embedding projection dim)
    gelu: torch.nn.GELU
        activation function
    fc: torch.nn.Linear
        a dense layer after projection (projection_dim to projection_dim)
    dropout: torch.nn.Dropout
        dropout after fc
    layer_norm: torch.nn.LayerNorm
        layer norm after dropout
    
    Methods:
    --------
        forward(x)
            returns projection embeddings from x (encoder output embeddings)
        __init__()
            creates the projection head
    """
    def __init__(
        self,
        embedding_dim,
        projection_dim=CFG.projection_dim,
        dropout=CFG.dropout
    ):
        """
        Creates the projection head used after an encoder.

            Parameters:
            -----------
            embedding_dim: int
                dimension of the output embeddings of the encoder.
            projection_dim: int, optional
                dimension to project embeddings to.
            dropout: float
                fraction of the output of fc layer to be zeroed.
        """
        super().__init__()
        self.projection = nn.Linear(embedding_dim, projection_dim)
        self.gelu = nn.GELU()
        self.fc = nn.Linear(projection_dim, projection_dim)
        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(projection_dim)
    
    def forward(self, x):
        """
        Forwards and calculates projected embeddings from encoder embeddings.

            Parameters:
            -----------
            x: input (of shape (batch_size, embedding_dim))
                the output embedding of this projection head's encoder

            Returns:
            --------
            the embeddings in a shared embedding space (of shape (batch_size, projection_dim))
        """
        projected = self.projection(x) #main projection layer
        x = self.gelu(projected)
        x = self.fc(x)
        x = self.dropout(x)
        # the projected outputs are added to x as a residual connection
        x = x + projected
        x = self.layer_norm(x)
        return x


class ImageEncoder(nn.Module):
    """
    Image encoder used in CLIPModel
    ...
    Attributes:
    -----------
    model : a torch.nn.Module model from timm (pytorch-image-models)
        The image encoder model
    
    Methods:
    --------
        forward(x)
            returns model embeddings of x (batch of images)
        __init__()
            creates the encoder model using timm and loads fine-tuned model's state dict if needed. 
            also freezes the model if it's not trainable.
    """
    def __init__(
        self, pretrained, trainable, model_name=CFG.image_encoder_model
    ):
        """
        creates the encoder model using timm and loads fine-tuned model's state dict if needed. 
        Also freezes the model if it's not trainable.

            Parameters:
            -----------
            pretrained: bool
                if pretrained=True, get SOTA weights (or weights saved in image_encoder_weights_load_path). 
                else create a fresh untrained model.
            trainable: bool
                if trainable=False, the model's weights will be frozen.
            model_name: str
                image encoder model name used as input to timm.create_model.
        """
        super().__init__()
        self.model = timm.create_model(
            model_name, pretrained, num_classes=0, global_pool="avg"
        )
        if pretrained and CFG.image_encoder_weights_load_path:
            self.model.load_state_dict(torch.load(CFG.image_encoder_weights_load_path, map_location=CFG.device))
        for p in self.model.parameters():
            p.requires_grad = trainable

    def forward(self, x):
        """
        forwards and calculates embeddings of the input.

            Parameters:
            -----------
            x: input (batch of transformed images)

            Returns:
            --------
            embeddings of the model for the input (of shape (batch_size, image_embedding))
        """
        return self.model(x)