molinari135 commited on
Commit
21b2b8c
·
verified ·
1 Parent(s): c56dafe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -43
app.py CHANGED
@@ -4,6 +4,7 @@ import requests
4
  # FastAPI endpoint URL
5
  API_URL = "https://molinari135-product-return-prediction-api.hf.space/predict/"
6
 
 
7
  # Gradio Interface function
8
  def predict_return(selected_products, total_customer_purchases, total_customer_returns):
9
  # Input validation for returns (must be <= purchases)
@@ -31,6 +32,8 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
31
  "total_customer_returns": total_customer_returns
32
  }
33
 
 
 
34
  try:
35
  # Make the POST request to the FastAPI endpoint
36
  response = requests.post(API_URL, json=data)
@@ -44,16 +47,11 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
44
  return "Error: No predictions found."
45
 
46
  # Format the output to display nicely
47
- formatted_result = []
48
- for pred in predictions:
49
- formatted_result.append(f"{pred['product']} - {pred['prediction']} (Confidence: {pred['confidence']}%)")
50
-
51
- # Calculate total products in cart
52
- total = len(predictions)
53
- return formatted_result, f"Total Products in Cart: {total}"
54
 
55
  except requests.exceptions.RequestException as e:
56
- return f"Error: {str(e)}", ""
57
 
58
 
59
  # Predefined list of model-fabric-color combinations
@@ -66,44 +64,16 @@ combinations = [
66
  ]
67
 
68
  # Gradio interface elements
69
- inventory_checkbox_group = gr.CheckboxGroup(choices=combinations, label="Select Products", type="value")
70
-
71
- # Slider elements for total purchases and returns
72
- total_purchases_slider = gr.Slider(0, 10, step=1, label="Total Customer Purchases", value=0)
73
- total_returns_slider = gr.Slider(0, 10, step=1, label="Total Customer Returns", value=0)
74
-
75
- # Output elements for predictions and cart details
76
- cart_output = gr.Textbox(value="", label="Cart", interactive=False)
77
- predictions_output = gr.Textbox(value="", label="Prediction Results", interactive=False)
78
-
79
- # User information output
80
- user_info_output = gr.Textbox(value="User Information\nTotal Purchases: 0\nTotal Returns: 0", label="User Info", interactive=False)
81
-
82
- # Layout with two main columns: Left (Inventory) and Right (User Info + Cart)
83
- with gr.Row():
84
- with gr.Column():
85
- inventory_checkbox_group # Left side: Inventory
86
- with gr.Column():
87
- user_info_output # Right side: User Info
88
- cart_output # Right side: Cart & Predictions
89
- predictions_output # Right side: Prediction Results
90
-
91
-
92
- # Gradio Interface
93
  interface = gr.Interface(
94
- fn=predict_return, # Function to process predictions
95
  inputs=[
96
- inventory_checkbox_group, # Left side: Inventory
97
- total_purchases_slider, # Total purchases
98
- total_returns_slider # Total returns
99
- ],
100
- outputs=[
101
- predictions_output, # Right side: Cart & Predictions
102
- user_info_output, # Right side: User Info
103
- cart_output # Right side: Cart
104
  ],
105
- live=True # Enable live interaction
 
106
  )
107
 
108
  # Launch the Gradio interface
109
- interface.launch()
 
4
  # FastAPI endpoint URL
5
  API_URL = "https://molinari135-product-return-prediction-api.hf.space/predict/"
6
 
7
+
8
  # Gradio Interface function
9
  def predict_return(selected_products, total_customer_purchases, total_customer_returns):
10
  # Input validation for returns (must be <= purchases)
 
32
  "total_customer_returns": total_customer_returns
33
  }
34
 
35
+ print(data)
36
+
37
  try:
38
  # Make the POST request to the FastAPI endpoint
39
  response = requests.post(API_URL, json=data)
 
47
  return "Error: No predictions found."
48
 
49
  # Format the output to display nicely
50
+ formatted_result = "\n".join([f"Product: {pred['product']} \t Prediction: {pred['prediction']} \t Confidence: {pred['confidence']}%" for pred in predictions])
51
+ return formatted_result
 
 
 
 
 
52
 
53
  except requests.exceptions.RequestException as e:
54
+ return f"Error: {str(e)}"
55
 
56
 
57
  # Predefined list of model-fabric-color combinations
 
64
  ]
65
 
66
  # Gradio interface elements
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  interface = gr.Interface(
68
+ fn=predict_return, # Function that handles the prediction logic
69
  inputs=[
70
+ gr.CheckboxGroup(choices=combinations, label="Select Products"), # Allow multiple product selections
71
+ gr.Slider(0, 10, step=1, label="Total Customer Purchases", value=0),
72
+ gr.Slider(0, 10, step=1, label="Total Customer Returns", value=0)
 
 
 
 
 
73
  ],
74
+ outputs="text", # Display predictions as text
75
+ live=True # To enable the interface to interact live
76
  )
77
 
78
  # Launch the Gradio interface
79
+ interface.launch()