Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import requests
|
|
4 |
# FastAPI endpoint URL
|
5 |
API_URL = "https://molinari135-product-return-prediction-api.hf.space/predict/"
|
6 |
|
|
|
7 |
# Gradio Interface function
|
8 |
def predict_return(selected_products, total_customer_purchases, total_customer_returns):
|
9 |
# Input validation for returns (must be <= purchases)
|
@@ -31,6 +32,8 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
|
|
31 |
"total_customer_returns": total_customer_returns
|
32 |
}
|
33 |
|
|
|
|
|
34 |
try:
|
35 |
# Make the POST request to the FastAPI endpoint
|
36 |
response = requests.post(API_URL, json=data)
|
@@ -44,16 +47,11 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
|
|
44 |
return "Error: No predictions found."
|
45 |
|
46 |
# Format the output to display nicely
|
47 |
-
formatted_result = []
|
48 |
-
|
49 |
-
formatted_result.append(f"{pred['product']} - {pred['prediction']} (Confidence: {pred['confidence']}%)")
|
50 |
-
|
51 |
-
# Calculate total products in cart
|
52 |
-
total = len(predictions)
|
53 |
-
return formatted_result, f"Total Products in Cart: {total}"
|
54 |
|
55 |
except requests.exceptions.RequestException as e:
|
56 |
-
return f"Error: {str(e)}"
|
57 |
|
58 |
|
59 |
# Predefined list of model-fabric-color combinations
|
@@ -66,44 +64,16 @@ combinations = [
|
|
66 |
]
|
67 |
|
68 |
# Gradio interface elements
|
69 |
-
inventory_checkbox_group = gr.CheckboxGroup(choices=combinations, label="Select Products", type="value")
|
70 |
-
|
71 |
-
# Slider elements for total purchases and returns
|
72 |
-
total_purchases_slider = gr.Slider(0, 10, step=1, label="Total Customer Purchases", value=0)
|
73 |
-
total_returns_slider = gr.Slider(0, 10, step=1, label="Total Customer Returns", value=0)
|
74 |
-
|
75 |
-
# Output elements for predictions and cart details
|
76 |
-
cart_output = gr.Textbox(value="", label="Cart", interactive=False)
|
77 |
-
predictions_output = gr.Textbox(value="", label="Prediction Results", interactive=False)
|
78 |
-
|
79 |
-
# User information output
|
80 |
-
user_info_output = gr.Textbox(value="User Information\nTotal Purchases: 0\nTotal Returns: 0", label="User Info", interactive=False)
|
81 |
-
|
82 |
-
# Layout with two main columns: Left (Inventory) and Right (User Info + Cart)
|
83 |
-
with gr.Row():
|
84 |
-
with gr.Column():
|
85 |
-
inventory_checkbox_group # Left side: Inventory
|
86 |
-
with gr.Column():
|
87 |
-
user_info_output # Right side: User Info
|
88 |
-
cart_output # Right side: Cart & Predictions
|
89 |
-
predictions_output # Right side: Prediction Results
|
90 |
-
|
91 |
-
|
92 |
-
# Gradio Interface
|
93 |
interface = gr.Interface(
|
94 |
-
fn=predict_return, # Function
|
95 |
inputs=[
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
],
|
100 |
-
outputs=[
|
101 |
-
predictions_output, # Right side: Cart & Predictions
|
102 |
-
user_info_output, # Right side: User Info
|
103 |
-
cart_output # Right side: Cart
|
104 |
],
|
105 |
-
|
|
|
106 |
)
|
107 |
|
108 |
# Launch the Gradio interface
|
109 |
-
interface.launch()
|
|
|
4 |
# FastAPI endpoint URL
|
5 |
API_URL = "https://molinari135-product-return-prediction-api.hf.space/predict/"
|
6 |
|
7 |
+
|
8 |
# Gradio Interface function
|
9 |
def predict_return(selected_products, total_customer_purchases, total_customer_returns):
|
10 |
# Input validation for returns (must be <= purchases)
|
|
|
32 |
"total_customer_returns": total_customer_returns
|
33 |
}
|
34 |
|
35 |
+
print(data)
|
36 |
+
|
37 |
try:
|
38 |
# Make the POST request to the FastAPI endpoint
|
39 |
response = requests.post(API_URL, json=data)
|
|
|
47 |
return "Error: No predictions found."
|
48 |
|
49 |
# Format the output to display nicely
|
50 |
+
formatted_result = "\n".join([f"Product: {pred['product']} \t Prediction: {pred['prediction']} \t Confidence: {pred['confidence']}%" for pred in predictions])
|
51 |
+
return formatted_result
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
except requests.exceptions.RequestException as e:
|
54 |
+
return f"Error: {str(e)}"
|
55 |
|
56 |
|
57 |
# Predefined list of model-fabric-color combinations
|
|
|
64 |
]
|
65 |
|
66 |
# Gradio interface elements
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
interface = gr.Interface(
|
68 |
+
fn=predict_return, # Function that handles the prediction logic
|
69 |
inputs=[
|
70 |
+
gr.CheckboxGroup(choices=combinations, label="Select Products"), # Allow multiple product selections
|
71 |
+
gr.Slider(0, 10, step=1, label="Total Customer Purchases", value=0),
|
72 |
+
gr.Slider(0, 10, step=1, label="Total Customer Returns", value=0)
|
|
|
|
|
|
|
|
|
|
|
73 |
],
|
74 |
+
outputs="text", # Display predictions as text
|
75 |
+
live=True # To enable the interface to interact live
|
76 |
)
|
77 |
|
78 |
# Launch the Gradio interface
|
79 |
+
interface.launch()
|