Update app.py
Browse files
app.py
CHANGED
@@ -13,57 +13,95 @@ dataset = load_dataset("molinari135/armani-inventory", token=hf_token, data_file
|
|
13 |
inventory = pd.DataFrame(dataset['train']).head(50)
|
14 |
|
15 |
# Gradio Interface function
|
16 |
-
def predict_return(
|
17 |
# Input validation for returns (must be <= purchases)
|
18 |
if total_customer_returns > total_customer_purchases:
|
19 |
return "Error: Total returns cannot be greater than total purchases."
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
colours = selected_products['Item Brand Colour'].tolist()
|
28 |
-
|
29 |
-
# Preparazione per il calcolo del carrello
|
30 |
-
cart_details = "\n".join([
|
31 |
-
f"{row['Item Brand Model']} - {row['Product Type']}, {row['Main Material']}, Sales: {row['Net Sales (FA)']} USD"
|
32 |
-
for _, row in selected_products.iterrows()
|
33 |
-
])
|
34 |
-
|
35 |
-
# Calcolare il totale del carrello
|
36 |
-
total_value = selected_products['Net Sales (FA)'].sum()
|
37 |
-
|
38 |
-
# Simula la predizione
|
39 |
-
# (In un'applicazione reale, invia questi dati a un endpoint API per fare la predizione)
|
40 |
-
predictions = [
|
41 |
-
f"{model} - No Return (Confidence: 0.95%)" for model in models
|
42 |
-
]
|
43 |
-
|
44 |
-
# Formatta il risultato per visualizzazione
|
45 |
-
formatted_result = "\n".join(predictions)
|
46 |
-
total_cart = f"Total Cart Value: {total_value} USD"
|
47 |
-
|
48 |
-
return cart_details, formatted_result, total_cart
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
interface = gr.Interface(
|
57 |
fn=predict_return, # Funzione per la logica di predizione
|
58 |
inputs=[
|
59 |
-
gr.
|
|
|
|
|
|
|
|
|
60 |
gr.Slider(0, 10, step=1, label="Total Customer Purchases", value=0),
|
61 |
gr.Slider(0, 10, step=1, label="Total Customer Returns", value=0)
|
62 |
],
|
63 |
outputs=[
|
64 |
gr.Textbox(label="Cart Details"), # Dettagli del carrello
|
65 |
-
gr.Textbox(label="Prediction Results")
|
66 |
-
gr.Textbox(label="Total Cart") # Totale del carrello
|
67 |
],
|
68 |
live=True # Interattività in tempo reale
|
69 |
)
|
|
|
13 |
inventory = pd.DataFrame(dataset['train']).head(50)
|
14 |
|
15 |
# Gradio Interface function
|
16 |
+
def predict_return(selected_products, total_customer_purchases, total_customer_returns):
|
17 |
# Input validation for returns (must be <= purchases)
|
18 |
if total_customer_returns > total_customer_purchases:
|
19 |
return "Error: Total returns cannot be greater than total purchases."
|
20 |
|
21 |
+
# Prepare the request data
|
22 |
+
models = []
|
23 |
+
fabrics = []
|
24 |
+
colours = []
|
25 |
+
descriptions = []
|
26 |
+
total_value = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
for selected_product in selected_products:
|
29 |
+
# Split each selected product into model, fabric, and color
|
30 |
+
model, fabric, color = selected_product.split("-")
|
31 |
+
models.append(model)
|
32 |
+
fabrics.append(fabric)
|
33 |
+
colours.append(color)
|
34 |
+
|
35 |
+
# Get the product details from the inventory
|
36 |
+
product_details = inventory[(
|
37 |
+
inventory['Item Brand Model'] == model) &
|
38 |
+
(inventory['Item Brand Fabric'] == fabric) &
|
39 |
+
(inventory['Item Brand Colour'] == color)
|
40 |
+
]
|
41 |
+
|
42 |
+
if not product_details.empty:
|
43 |
+
# Calculate the product value and add it to the total
|
44 |
+
product_value = product_details['Net Sales (FA)'].values[0]
|
45 |
+
total_value += product_value
|
46 |
+
|
47 |
+
# Add description to the cart
|
48 |
+
description = (
|
49 |
+
f"Model: {model}, Fabric: {fabric}, Colour: {color}, "
|
50 |
+
f"Product Type: {product_details['Product Type'].values[0]}, "
|
51 |
+
f"Material: {product_details['Main Material'].values[0]}, "
|
52 |
+
f"Sales Value: {product_value} USD"
|
53 |
+
)
|
54 |
+
descriptions.append(description)
|
55 |
+
else:
|
56 |
+
descriptions.append(f"{model}-{fabric}-{color}: Not Found")
|
57 |
+
|
58 |
+
# Prepare the data to send to the API
|
59 |
+
data = {
|
60 |
+
"models": models,
|
61 |
+
"fabrics": fabrics,
|
62 |
+
"colours": colours,
|
63 |
+
"total_customer_purchases": total_customer_purchases,
|
64 |
+
"total_customer_returns": total_customer_returns
|
65 |
+
}
|
66 |
+
|
67 |
+
try:
|
68 |
+
# Make the POST request to the FastAPI endpoint
|
69 |
+
response = requests.post(API_URL, json=data)
|
70 |
+
response.raise_for_status() # Raise an error for bad responses
|
71 |
+
|
72 |
+
# Get the predictions and return them
|
73 |
+
result = response.json()
|
74 |
+
predictions = result.get('predictions', [])
|
75 |
+
|
76 |
+
if not predictions:
|
77 |
+
return "Error: No predictions found."
|
78 |
|
79 |
+
# Format the cart output
|
80 |
+
cart_output = "\n".join(descriptions) + f"\nTotal Cart Value: {total_value} USD"
|
81 |
+
|
82 |
+
# Format the prediction results
|
83 |
+
formatted_result = "\n".join([f"Product: {pred['product']} \t Prediction: {pred['prediction']} \t Confidence: {pred['confidence']}%" for pred in predictions])
|
84 |
+
|
85 |
+
return cart_output, formatted_result
|
86 |
+
|
87 |
+
except requests.exceptions.RequestException as e:
|
88 |
+
return f"Error: {str(e)}"
|
89 |
+
|
90 |
+
# Gradio interface elements
|
91 |
interface = gr.Interface(
|
92 |
fn=predict_return, # Funzione per la logica di predizione
|
93 |
inputs=[
|
94 |
+
gr.CheckboxGroup(
|
95 |
+
choices=[f"{row['Item Brand Model']}-{row['Item Brand Fabric']}-{row['Item Brand Colour']}"
|
96 |
+
for _, row in inventory.iterrows()],
|
97 |
+
label="Select Products"
|
98 |
+
),
|
99 |
gr.Slider(0, 10, step=1, label="Total Customer Purchases", value=0),
|
100 |
gr.Slider(0, 10, step=1, label="Total Customer Returns", value=0)
|
101 |
],
|
102 |
outputs=[
|
103 |
gr.Textbox(label="Cart Details"), # Dettagli del carrello
|
104 |
+
gr.Textbox(label="Prediction Results") # Risultati della predizione
|
|
|
105 |
],
|
106 |
live=True # Interattività in tempo reale
|
107 |
)
|