Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ API_URL = "https://molinari135-product-return-prediction-api.hf.space/predict/"
|
|
10 |
# Load the inventory dataset from Hugging Face
|
11 |
hf_token = os.getenv("inventory_data")
|
12 |
dataset = load_dataset("molinari135/armani-inventory", token=hf_token, data_files="inventory.tsv")
|
13 |
-
inventory = pd.DataFrame(dataset['train']).head(
|
14 |
|
15 |
# Gradio Interface function
|
16 |
def predict_return(selected_products, total_customer_purchases, total_customer_returns):
|
@@ -27,7 +27,12 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
|
|
27 |
|
28 |
for selected_product in selected_products:
|
29 |
# Split each selected product into model, fabric, and color
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
models.append(model)
|
32 |
fabrics.append(fabric)
|
33 |
colours.append(color)
|
|
|
10 |
# Load the inventory dataset from Hugging Face
|
11 |
hf_token = os.getenv("inventory_data")
|
12 |
dataset = load_dataset("molinari135/armani-inventory", token=hf_token, data_files="inventory.tsv")
|
13 |
+
inventory = pd.DataFrame(dataset['train']).head(20)
|
14 |
|
15 |
# Gradio Interface function
|
16 |
def predict_return(selected_products, total_customer_purchases, total_customer_returns):
|
|
|
27 |
|
28 |
for selected_product in selected_products:
|
29 |
# Split each selected product into model, fabric, and color
|
30 |
+
product_info = selected_product.split(" - ")
|
31 |
+
model_fabric_colour = product_info[0] # Questo è del tipo "Model-Fabric-Colour"
|
32 |
+
|
33 |
+
# Dividi il codice prodotto in modello, tessuto e colore
|
34 |
+
model, fabric, color = model_fabric_colour.split("-")
|
35 |
+
|
36 |
models.append(model)
|
37 |
fabrics.append(fabric)
|
38 |
colours.append(color)
|