Update app.py
Browse files
app.py
CHANGED
@@ -10,15 +10,15 @@ API_URL = "https://molinari135-product-return-prediction-api.hf.space/predict/"
|
|
10 |
# Load the inventory dataset from Hugging Face
|
11 |
hf_token = os.getenv("inventory_data")
|
12 |
dataset = load_dataset("molinari135/armani-inventory", token=hf_token, data_files="inventory.tsv")
|
13 |
-
inventory = pd.DataFrame(dataset['train']).head(
|
14 |
|
15 |
-
#
|
16 |
def predict_return(selected_products, total_customer_purchases, total_customer_returns):
|
17 |
-
#
|
18 |
if total_customer_returns > total_customer_purchases:
|
19 |
-
return "
|
20 |
|
21 |
-
#
|
22 |
models = []
|
23 |
fabrics = []
|
24 |
colours = []
|
@@ -26,13 +26,13 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
|
|
26 |
total_value = 0
|
27 |
|
28 |
for selected_product in selected_products:
|
29 |
-
#
|
30 |
model, fabric, color = selected_product.split("-")
|
31 |
models.append(model)
|
32 |
fabrics.append(fabric)
|
33 |
colours.append(color)
|
34 |
|
35 |
-
#
|
36 |
product_details = inventory[(
|
37 |
inventory['Item Brand Model'] == model) &
|
38 |
(inventory['Item Brand Fabric'] == fabric) &
|
@@ -40,22 +40,20 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
|
|
40 |
]
|
41 |
|
42 |
if not product_details.empty:
|
43 |
-
#
|
44 |
product_value = product_details['Net Sales (FA)'].values[0]
|
45 |
total_value += product_value
|
46 |
|
47 |
-
#
|
48 |
description = (
|
49 |
f"Model: {model}, Fabric: {fabric}, Colour: {color}, "
|
50 |
-
f"Product Type: {product_details['Product Type'].values[0]}, "
|
51 |
-
f"Material: {product_details['Main Material'].values[0]}, "
|
52 |
f"Sales Value: {product_value} USD"
|
53 |
)
|
54 |
descriptions.append(description)
|
55 |
else:
|
56 |
descriptions.append(f"{model}-{fabric}-{color}: Not Found")
|
57 |
|
58 |
-
#
|
59 |
data = {
|
60 |
"models": models,
|
61 |
"fabrics": fabrics,
|
@@ -65,40 +63,36 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
|
|
65 |
}
|
66 |
|
67 |
try:
|
68 |
-
#
|
69 |
response = requests.post(API_URL, json=data)
|
70 |
-
response.raise_for_status() #
|
71 |
|
72 |
-
#
|
73 |
result = response.json()
|
74 |
predictions = result.get('predictions', [])
|
75 |
|
76 |
if not predictions:
|
77 |
-
return "
|
78 |
|
79 |
-
#
|
80 |
cart_output = "\n".join(descriptions) + f"\nTotal Cart Value: {total_value} USD"
|
81 |
|
82 |
-
#
|
83 |
formatted_result = "\n".join([f"Product: {pred['product']} \t Prediction: {pred['prediction']} \t Confidence: {pred['confidence']}%" for pred in predictions])
|
84 |
|
85 |
return cart_output, formatted_result
|
86 |
|
87 |
except requests.exceptions.RequestException as e:
|
88 |
-
return f"
|
89 |
-
|
90 |
-
# Crea l'interfaccia Gradio con le checkbox a sinistra
|
91 |
-
checkbox_choices = [
|
92 |
-
f"{row['Item Brand Model']}-{row['Item Brand Fabric']}-{row['Item Brand Colour']} - "
|
93 |
-
f"Type: {row['Product Type']} - Material: {row['Main Material']} - Sales: {row['Net Sales (FA)']} USD"
|
94 |
-
for _, row in inventory.iterrows()
|
95 |
-
]
|
96 |
|
|
|
97 |
interface = gr.Interface(
|
98 |
fn=predict_return, # Funzione per la logica di predizione
|
99 |
inputs=[
|
100 |
gr.CheckboxGroup(
|
101 |
-
choices=
|
|
|
|
|
102 |
label="Select Products"
|
103 |
),
|
104 |
gr.Slider(0, 10, step=1, label="Total Customer Purchases", value=0),
|
|
|
10 |
# Load the inventory dataset from Hugging Face
|
11 |
hf_token = os.getenv("inventory_data")
|
12 |
dataset = load_dataset("molinari135/armani-inventory", token=hf_token, data_files="inventory.tsv")
|
13 |
+
inventory = pd.DataFrame(dataset['train']).head(20)
|
14 |
|
15 |
+
# Gradio Interface function
|
16 |
def predict_return(selected_products, total_customer_purchases, total_customer_returns):
|
17 |
+
# Input validation for returns (must be <= purchases)
|
18 |
if total_customer_returns > total_customer_purchases:
|
19 |
+
return "Error: Total returns cannot be greater than total purchases."
|
20 |
|
21 |
+
# Prepare the request data
|
22 |
models = []
|
23 |
fabrics = []
|
24 |
colours = []
|
|
|
26 |
total_value = 0
|
27 |
|
28 |
for selected_product in selected_products:
|
29 |
+
# Split each selected product into model, fabric, and color
|
30 |
model, fabric, color = selected_product.split("-")
|
31 |
models.append(model)
|
32 |
fabrics.append(fabric)
|
33 |
colours.append(color)
|
34 |
|
35 |
+
# Get the product details from the inventory
|
36 |
product_details = inventory[(
|
37 |
inventory['Item Brand Model'] == model) &
|
38 |
(inventory['Item Brand Fabric'] == fabric) &
|
|
|
40 |
]
|
41 |
|
42 |
if not product_details.empty:
|
43 |
+
# Calculate the product value and add it to the total
|
44 |
product_value = product_details['Net Sales (FA)'].values[0]
|
45 |
total_value += product_value
|
46 |
|
47 |
+
# Add description to the cart
|
48 |
description = (
|
49 |
f"Model: {model}, Fabric: {fabric}, Colour: {color}, "
|
|
|
|
|
50 |
f"Sales Value: {product_value} USD"
|
51 |
)
|
52 |
descriptions.append(description)
|
53 |
else:
|
54 |
descriptions.append(f"{model}-{fabric}-{color}: Not Found")
|
55 |
|
56 |
+
# Prepare the data to send to the API
|
57 |
data = {
|
58 |
"models": models,
|
59 |
"fabrics": fabrics,
|
|
|
63 |
}
|
64 |
|
65 |
try:
|
66 |
+
# Make the POST request to the FastAPI endpoint
|
67 |
response = requests.post(API_URL, json=data)
|
68 |
+
response.raise_for_status() # Raise an error for bad responses
|
69 |
|
70 |
+
# Get the predictions and return them
|
71 |
result = response.json()
|
72 |
predictions = result.get('predictions', [])
|
73 |
|
74 |
if not predictions:
|
75 |
+
return "Error: No predictions found."
|
76 |
|
77 |
+
# Format the cart output
|
78 |
cart_output = "\n".join(descriptions) + f"\nTotal Cart Value: {total_value} USD"
|
79 |
|
80 |
+
# Format the prediction results
|
81 |
formatted_result = "\n".join([f"Product: {pred['product']} \t Prediction: {pred['prediction']} \t Confidence: {pred['confidence']}%" for pred in predictions])
|
82 |
|
83 |
return cart_output, formatted_result
|
84 |
|
85 |
except requests.exceptions.RequestException as e:
|
86 |
+
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
# Gradio interface elements
|
89 |
interface = gr.Interface(
|
90 |
fn=predict_return, # Funzione per la logica di predizione
|
91 |
inputs=[
|
92 |
gr.CheckboxGroup(
|
93 |
+
choices=[
|
94 |
+
f"{row['Item Brand Model']}-{row['Item Brand Fabric']}-{row['Item Brand Colour']} \nProduct type: {row['Product Type']} Product subtype: {row['Product Subtype']} Price: {row['Net Sales (FA)']}"
|
95 |
+
for _, row in inventory.iterrows()],
|
96 |
label="Select Products"
|
97 |
),
|
98 |
gr.Slider(0, 10, step=1, label="Total Customer Purchases", value=0),
|