molinari135 commited on
Commit
d5787cd
·
verified ·
1 Parent(s): 734a78a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -53
app.py CHANGED
@@ -1,18 +1,29 @@
1
  import gradio as gr
2
  import requests
 
 
 
3
 
4
  # FastAPI endpoint URL
5
  API_URL = "https://molinari135-product-return-prediction-api.hf.space/predict/"
6
 
 
 
 
 
 
 
7
  def predict_return(selected_products, total_customer_purchases, total_customer_returns):
8
  # Input validation for returns (must be <= purchases)
9
  if total_customer_returns > total_customer_purchases:
10
- return "Error: Total returns cannot be greater than total purchases.", "", ""
11
 
12
  # Prepare the request data
13
  models = []
14
  fabrics = []
15
  colours = []
 
 
16
 
17
  for selected_product in selected_products:
18
  # Split each selected product into model, fabric, and color
@@ -20,6 +31,23 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
20
  models.append(model)
21
  fabrics.append(fabric)
22
  colours.append(color)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  # Prepare the data to send to the API
25
  data = {
@@ -30,8 +58,6 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
30
  "total_customer_returns": total_customer_returns
31
  }
32
 
33
- print(data)
34
-
35
  try:
36
  # Make the POST request to the FastAPI endpoint
37
  response = requests.post(API_URL, json=data)
@@ -42,67 +68,36 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
42
  predictions = result.get('predictions', [])
43
 
44
  if not predictions:
45
- return "Error: No predictions found.", "", ""
46
-
47
- # Format the output to display nicely
48
- formatted_result = "\n".join([f"{pred['product']} - {pred['prediction']} (Confidence: {pred['confidence']}%)" for pred in predictions])
49
 
50
- total_products_in_cart = f"Total Products in Cart: {len(predictions)}"
51
-
52
- # Return all the required values
53
- return formatted_result, total_products_in_cart, ""
54
 
55
- except requests.exceptions.RequestException as e:
56
- return f"Error: {str(e)}", "", ""
57
 
 
58
 
59
- # Predefined list of model-fabric-color combinations
60
- combinations = [
61
- "01CA9T-0130C-922",
62
- "0NG3DT-02003-999",
63
- "3R1F67-1JCYZ-0092",
64
- "211740-3R419-06935",
65
- "6R1J75-1DQSZ-0943"
66
- ]
67
 
68
  # Gradio interface elements
69
- inventory_checkbox_group = gr.CheckboxGroup(choices=combinations, label="Select Products", type="value")
70
-
71
- # Slider elements for total purchases and returns
72
- total_purchases_slider = gr.Slider(0, 10, step=1, label="Total Customer Purchases", value=0)
73
- total_returns_slider = gr.Slider(0, 10, step=1, label="Total Customer Returns", value=0)
74
-
75
- # Output elements for predictions and cart details
76
- cart_output = gr.Textbox(value="", label="Cart", interactive=False)
77
- predictions_output = gr.Textbox(value="", label="Prediction Results", interactive=False)
78
-
79
- # User information output
80
- user_info_output = gr.Textbox(value="User Information\nTotal Purchases: 0\nTotal Returns: 0", label="User Info", interactive=False)
81
-
82
- # Layout with two main columns: Left (Inventory) and Right (User Info + Cart)
83
- with gr.Row():
84
- with gr.Column():
85
- inventory_checkbox_group # Left side: Inventory
86
- with gr.Column():
87
- user_info_output # Right side: User Info
88
- cart_output # Right side: Cart & Predictions
89
- predictions_output # Right side: Prediction Results
90
-
91
-
92
- # Gradio Interface
93
  interface = gr.Interface(
94
- fn=predict_return, # Function to process predictions
95
  inputs=[
96
- inventory_checkbox_group, # Left side: Inventory
97
- total_purchases_slider, # Total purchases
98
- total_returns_slider # Total returns
 
 
 
 
99
  ],
100
  outputs=[
101
- predictions_output, # Right side: Cart & Predictions
102
- user_info_output, # Right side: User Info
103
- cart_output # Right side: Cart
104
  ],
105
- live=True # Enable live interaction
106
  )
107
 
108
  # Launch the Gradio interface
 
1
  import gradio as gr
2
  import requests
3
+ import pandas as pd
4
+ import os
5
+ from datasets import load_dataset
6
 
7
  # FastAPI endpoint URL
8
  API_URL = "https://molinari135-product-return-prediction-api.hf.space/predict/"
9
 
10
+ # Load the inventory dataset from Hugging Face
11
+ hf_token = os.getenv("inventory_data")
12
+ dataset = load_dataset("molinari135/armani-inventory", token=hf_token, data_files="inventory.tsv")
13
+ inventory = pd.DataFrame(dataset['train'])
14
+
15
+ # Gradio Interface function
16
  def predict_return(selected_products, total_customer_purchases, total_customer_returns):
17
  # Input validation for returns (must be <= purchases)
18
  if total_customer_returns > total_customer_purchases:
19
+ return "Error: Total returns cannot be greater than total purchases."
20
 
21
  # Prepare the request data
22
  models = []
23
  fabrics = []
24
  colours = []
25
+ descriptions = []
26
+ total_value = 0
27
 
28
  for selected_product in selected_products:
29
  # Split each selected product into model, fabric, and color
 
31
  models.append(model)
32
  fabrics.append(fabric)
33
  colours.append(color)
34
+
35
+ # Get the product details from the inventory
36
+ product_details = inventory[
37
+ (inventory['Item Brand Model'] == model) &
38
+ (inventory['Item Brand Fabric'] == fabric) &
39
+ (inventory['Item Brand Colour'] == color)
40
+ ]
41
+
42
+ if not product_details.empty:
43
+ # Calculate the product value and add it to the total
44
+ product_value = product_details['Total Order Value'].values[0]
45
+ total_value += product_value
46
+
47
+ # Add description to the cart
48
+ descriptions.append(f"{model}-{fabric}-{color}: {product_value} USD")
49
+ else:
50
+ descriptions.append(f"{model}-{fabric}-{color}: Not Found")
51
 
52
  # Prepare the data to send to the API
53
  data = {
 
58
  "total_customer_returns": total_customer_returns
59
  }
60
 
 
 
61
  try:
62
  # Make the POST request to the FastAPI endpoint
63
  response = requests.post(API_URL, json=data)
 
68
  predictions = result.get('predictions', [])
69
 
70
  if not predictions:
71
+ return "Error: No predictions found."
 
 
 
72
 
73
+ # Format the cart output
74
+ cart_output = "\n".join(descriptions) + f"\nTotal Cart Value: {total_value} USD"
 
 
75
 
76
+ # Format the prediction results
77
+ formatted_result = "\n".join([f"Product: {pred['product']} \t Prediction: {pred['prediction']} \t Confidence: {pred['confidence']}%" for pred in predictions])
78
 
79
+ return cart_output, formatted_result
80
 
81
+ except requests.exceptions.RequestException as e:
82
+ return f"Error: {str(e)}"
 
 
 
 
 
 
83
 
84
  # Gradio interface elements
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  interface = gr.Interface(
86
+ fn=predict_return, # Function that handles the prediction logic
87
  inputs=[
88
+ gr.CheckboxGroup(
89
+ choices=[f"{row['Item Brand Model']}-{row['Item Brand Fabric']}-{row['Item Brand Colour']}"
90
+ for _, row in inventory.iterrows()],
91
+ label="Select Products"
92
+ ),
93
+ gr.Slider(0, 10, step=1, label="Total Customer Purchases", value=0),
94
+ gr.Slider(0, 10, step=1, label="Total Customer Returns", value=0)
95
  ],
96
  outputs=[
97
+ gr.Textbox(label="Cart Details"), # Display cart details
98
+ gr.Textbox(label="Prediction Results") # Display prediction results
 
99
  ],
100
+ live=True # To enable the interface to interact live
101
  )
102
 
103
  # Launch the Gradio interface