Update app.py
Browse files
app.py
CHANGED
@@ -4,21 +4,20 @@ import pandas as pd
|
|
4 |
import os
|
5 |
from datasets import load_dataset
|
6 |
|
7 |
-
|
8 |
API_URL = "https://molinari135-product-return-prediction-api.hf.space/predict/"
|
9 |
|
10 |
-
|
11 |
hf_token = os.getenv("inventory_data")
|
12 |
dataset = load_dataset("molinari135/armani-inventory", token=hf_token, data_files="inventory.tsv")
|
13 |
inventory = pd.DataFrame(dataset['train']).sample(n=15, random_state=42)
|
14 |
|
15 |
-
|
16 |
def predict_return(selected_products, total_customer_purchases, total_customer_returns):
|
17 |
-
|
18 |
if total_customer_returns > total_customer_purchases:
|
19 |
return "Error: Total returns cannot be greater than total purchases."
|
20 |
|
21 |
-
# Prepare the request data
|
22 |
models = []
|
23 |
fabrics = []
|
24 |
colours = []
|
@@ -26,18 +25,15 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
|
|
26 |
total_value = 0
|
27 |
|
28 |
for selected_product in selected_products:
|
29 |
-
# Split each selected product into model, fabric, and color
|
30 |
product_info = selected_product.split(" \t\t")
|
31 |
-
model_fabric_colour = product_info[0]
|
32 |
|
33 |
-
# Dividi il codice prodotto in modello, tessuto e colore
|
34 |
model, fabric, color = model_fabric_colour.split("-")
|
35 |
|
36 |
models.append(model)
|
37 |
fabrics.append(fabric)
|
38 |
colours.append(color)
|
39 |
|
40 |
-
# Get the product details from the inventory
|
41 |
product_details = inventory[(
|
42 |
inventory['Item Brand Model'] == model) &
|
43 |
(inventory['Item Brand Fabric'] == fabric) &
|
@@ -45,11 +41,9 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
|
|
45 |
]
|
46 |
|
47 |
if not product_details.empty:
|
48 |
-
# Calculate the product value and add it to the total
|
49 |
product_value = product_details['Net Sales (FA)'].values[0]
|
50 |
total_value += product_value
|
51 |
|
52 |
-
# Add description to the cart
|
53 |
description = (
|
54 |
f"Model: {model}, Fabric: {fabric}, Colour: {color} \tSales Value: {product_value} USD"
|
55 |
)
|
@@ -57,7 +51,6 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
|
|
57 |
else:
|
58 |
descriptions.append(f"{model}-{fabric}-{color}: Not Found")
|
59 |
|
60 |
-
# Prepare the data to send to the API
|
61 |
data = {
|
62 |
"models": models,
|
63 |
"fabrics": fabrics,
|
@@ -67,21 +60,17 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
|
|
67 |
}
|
68 |
|
69 |
try:
|
70 |
-
# Make the POST request to the FastAPI endpoint
|
71 |
response = requests.post(API_URL, json=data)
|
72 |
-
response.raise_for_status()
|
73 |
|
74 |
-
# Get the predictions and return them
|
75 |
result = response.json()
|
76 |
predictions = result.get('predictions', [])
|
77 |
|
78 |
if not predictions:
|
79 |
return "Error: No predictions found."
|
80 |
|
81 |
-
# Format the cart output
|
82 |
cart_output = "\n".join(descriptions) + f"\n\nTotal Cart Value: {round(total_value, 2)} USD"
|
83 |
|
84 |
-
# Format the prediction results
|
85 |
formatted_result = "\n".join([f"Product: {pred['product']} \t Prediction: {pred['prediction']} \t Confidence: {pred['confidence']}" for pred in predictions])
|
86 |
|
87 |
return cart_output, formatted_result
|
@@ -89,7 +78,6 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
|
|
89 |
except requests.exceptions.RequestException as e:
|
90 |
return f"Error: {str(e)}"
|
91 |
|
92 |
-
# Crea l'interfaccia Gradio con le checkbox a sinistra
|
93 |
checkbox_choices = [
|
94 |
f"{row['Item Brand Model']}-{row['Item Brand Fabric']}-{row['Item Brand Colour']}"
|
95 |
f" \t\tType: {row['Product Type']} \t\tMaterial: {row['Main Material']} \t\tSales: {round(row['Net Sales (FA)'], 2)} USD"
|
@@ -97,21 +85,20 @@ checkbox_choices = [
|
|
97 |
]
|
98 |
|
99 |
interface = gr.Interface(
|
100 |
-
fn=predict_return,
|
101 |
inputs=[
|
102 |
gr.CheckboxGroup(
|
103 |
-
choices=checkbox_choices,
|
104 |
label="Select Products"
|
105 |
),
|
106 |
gr.Slider(0, 10, step=1, label="Total Customer Purchases", value=0),
|
107 |
gr.Slider(0, 10, step=1, label="Total Customer Returns", value=0)
|
108 |
],
|
109 |
outputs=[
|
110 |
-
gr.Textbox(label="Cart Details"),
|
111 |
-
gr.Textbox(label="Prediction Results")
|
112 |
],
|
113 |
-
live=
|
114 |
)
|
115 |
|
116 |
-
# Lancio dell'interfaccia Gradio
|
117 |
interface.launch()
|
|
|
4 |
import os
|
5 |
from datasets import load_dataset
|
6 |
|
7 |
+
|
8 |
API_URL = "https://molinari135-product-return-prediction-api.hf.space/predict/"
|
9 |
|
10 |
+
|
11 |
hf_token = os.getenv("inventory_data")
|
12 |
dataset = load_dataset("molinari135/armani-inventory", token=hf_token, data_files="inventory.tsv")
|
13 |
inventory = pd.DataFrame(dataset['train']).sample(n=15, random_state=42)
|
14 |
|
15 |
+
|
16 |
def predict_return(selected_products, total_customer_purchases, total_customer_returns):
|
17 |
+
|
18 |
if total_customer_returns > total_customer_purchases:
|
19 |
return "Error: Total returns cannot be greater than total purchases."
|
20 |
|
|
|
21 |
models = []
|
22 |
fabrics = []
|
23 |
colours = []
|
|
|
25 |
total_value = 0
|
26 |
|
27 |
for selected_product in selected_products:
|
|
|
28 |
product_info = selected_product.split(" \t\t")
|
29 |
+
model_fabric_colour = product_info[0]
|
30 |
|
|
|
31 |
model, fabric, color = model_fabric_colour.split("-")
|
32 |
|
33 |
models.append(model)
|
34 |
fabrics.append(fabric)
|
35 |
colours.append(color)
|
36 |
|
|
|
37 |
product_details = inventory[(
|
38 |
inventory['Item Brand Model'] == model) &
|
39 |
(inventory['Item Brand Fabric'] == fabric) &
|
|
|
41 |
]
|
42 |
|
43 |
if not product_details.empty:
|
|
|
44 |
product_value = product_details['Net Sales (FA)'].values[0]
|
45 |
total_value += product_value
|
46 |
|
|
|
47 |
description = (
|
48 |
f"Model: {model}, Fabric: {fabric}, Colour: {color} \tSales Value: {product_value} USD"
|
49 |
)
|
|
|
51 |
else:
|
52 |
descriptions.append(f"{model}-{fabric}-{color}: Not Found")
|
53 |
|
|
|
54 |
data = {
|
55 |
"models": models,
|
56 |
"fabrics": fabrics,
|
|
|
60 |
}
|
61 |
|
62 |
try:
|
|
|
63 |
response = requests.post(API_URL, json=data)
|
64 |
+
response.raise_for_status()
|
65 |
|
|
|
66 |
result = response.json()
|
67 |
predictions = result.get('predictions', [])
|
68 |
|
69 |
if not predictions:
|
70 |
return "Error: No predictions found."
|
71 |
|
|
|
72 |
cart_output = "\n".join(descriptions) + f"\n\nTotal Cart Value: {round(total_value, 2)} USD"
|
73 |
|
|
|
74 |
formatted_result = "\n".join([f"Product: {pred['product']} \t Prediction: {pred['prediction']} \t Confidence: {pred['confidence']}" for pred in predictions])
|
75 |
|
76 |
return cart_output, formatted_result
|
|
|
78 |
except requests.exceptions.RequestException as e:
|
79 |
return f"Error: {str(e)}"
|
80 |
|
|
|
81 |
checkbox_choices = [
|
82 |
f"{row['Item Brand Model']}-{row['Item Brand Fabric']}-{row['Item Brand Colour']}"
|
83 |
f" \t\tType: {row['Product Type']} \t\tMaterial: {row['Main Material']} \t\tSales: {round(row['Net Sales (FA)'], 2)} USD"
|
|
|
85 |
]
|
86 |
|
87 |
interface = gr.Interface(
|
88 |
+
fn=predict_return,
|
89 |
inputs=[
|
90 |
gr.CheckboxGroup(
|
91 |
+
choices=checkbox_choices,
|
92 |
label="Select Products"
|
93 |
),
|
94 |
gr.Slider(0, 10, step=1, label="Total Customer Purchases", value=0),
|
95 |
gr.Slider(0, 10, step=1, label="Total Customer Returns", value=0)
|
96 |
],
|
97 |
outputs=[
|
98 |
+
gr.Textbox(label="Cart Details"),
|
99 |
+
gr.Textbox(label="Prediction Results")
|
100 |
],
|
101 |
+
live=False
|
102 |
)
|
103 |
|
|
|
104 |
interface.launch()
|