File size: 7,283 Bytes
00f95e9
 
070c7da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d828aa5
070c7da
 
00f95e9
 
070c7da
00f95e9
 
 
 
 
 
070c7da
 
 
 
 
 
00f95e9
070c7da
 
 
 
 
 
 
 
 
 
00f95e9
 
 
 
070c7da
00f95e9
 
 
 
070c7da
00f95e9
070c7da
 
 
 
 
 
 
 
00f95e9
 
 
070c7da
 
 
00f95e9
070c7da
 
 
 
 
 
 
00f95e9
 
 
 
070c7da
 
 
 
00f95e9
070c7da
d828aa5
070c7da
 
 
 
 
 
 
00f95e9
 
 
070c7da
 
 
00f95e9
070c7da
 
 
 
 
00f95e9
 
 
 
070c7da
 
 
00f95e9
 
070c7da
 
 
 
 
 
 
 
 
 
 
 
 
 
00f95e9
 
 
 
070c7da
 
 
 
00f95e9
070c7da
 
 
 
 
 
00f95e9
 
 
 
070c7da
 
 
 
00f95e9
070c7da
 
 
 
 
 
00f95e9
 
 
 
070c7da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00f95e9
070c7da
00f95e9
 
 
 
070c7da
 
 
 
00f95e9
d828aa5
070c7da
 
 
 
 
 
 
 
 
 
 
 
00f95e9
 
 
 
070c7da
 
 
 
00f95e9
070c7da
 
 
 
00f95e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
070c7da
00f95e9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "4b572b87",
   "metadata": {},
   "source": [
    "# Working with Metadata"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a11900d1",
   "metadata": {},
   "source": [
    "This demo focuses on getting to know the data we are going to work with before\n",
    "downloading it and start processing it. Here, we are going to use the\n",
    "[PubChemQC-B3LYP/6-31G*//PM6\n",
    "Dataset](https://huggingface.co/datasets/molssiai-hub/pubchemqc-b3lyp) (PubChemQC-B3LYP for short)\n",
    "from the [MolSSI AI Hub](https://huggingface.co/molssiai-hub).\n",
    "\n",
    "\n",
    "In order to be able to interact with the data, we need to import the necessary libraries."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2493a0c3-4b27-496a-9514-32fb4941c94e",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import datasets                         # Hugging Face datasets library\n",
    "from datasets import (\n",
    "    get_dataset_config_info,            # Get information about a dataset configurations/subsets\n",
    "    get_dataset_config_names,           # Get the list of names of all dataset configurations/subsets\n",
    "    get_dataset_split_names,            # Get the list of names of all dataset splits\n",
    "    get_dataset_default_config_name     # Get the default configuration name of a dataset\n",
    ")\n",
    "from pprint import pprint               # Pretty print"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b362b39e",
   "metadata": {},
   "source": [
    "After importing the modules, we set a few variables that will be used throughout\n",
    "this demo."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c4892171-f79f-4eee-99db-a21d11b09e5c",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# path to the dataset repository on the Hugging Face Hub\n",
    "path = \"molssiai-hub/pubchemqc-b3lyp\"\n",
    "\n",
    "# set the dataset configuration/subset name\n",
    "name = \"b3lyp_pm6\"\n",
    "\n",
    "# set the dataset split\n",
    "split = \"train\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "affb8bf2",
   "metadata": {},
   "source": [
    "The modules and functions we imported allow us to inspect our dataset for a wide\n",
    "range of metadata and information without actually downloading it on disk. For\n",
    "example, we can access the list of all available configurations/subsets, splits,\n",
    "and the default configuration name in our dataset.\n",
    "\n",
    "The `get_dataset_config_info` function returns a `datasets.info.DatasetInfo` \n",
    "object which contains the metadata of our dataset configuration all in one place."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b0b1b1cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "# get the information about the PubChemQC-B3LYP dataset configuration/subset\n",
    "config_info = get_dataset_config_info(path, name, trust_remote_code=True)\n",
    "\n",
    "# print the retrieved information about the PubChemQC-B3LYP dataset\n",
    "print(\"Information about the PubChemQC-B3LYP dataset configuration/subset:\")\n",
    "pprint(config_info,\n",
    "       indent=4,\n",
    "       width=100,\n",
    "       compact=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c01684ca",
   "metadata": {},
   "source": [
    "Processing a lengthy output is not always convenient. In order to make the\n",
    "metadata inspection easier, we can access specific attributes of the\n",
    "`datasets.info.DatasetInfo` instance directly. For example, the `description`\n",
    "attribute can provide access to the content of the *description* field in the\n",
    "dataset configuration as shown below"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d7ca2dff",
   "metadata": {},
   "outputs": [],
   "source": [
    "pprint(config_info.description,\n",
    "       indent=4,\n",
    "       width=100,\n",
    "       compact=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7564c7f6",
   "metadata": {},
   "source": [
    "We can use other imported `get_dataset_*` helper functions to directly access\n",
    "the metadata and circumvent the creation of a `datasets.info.DatasetInfo` object\n",
    "as shown below"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f50da911",
   "metadata": {},
   "outputs": [],
   "source": [
    "# get the list of all available dataset configurations/subsets in the PubChemQC-B3LYP dataset\n",
    "config_names = get_dataset_config_names(path)\n",
    "\n",
    "# print the retrieved information about the PubChemQC-B3LYP dataset\n",
    "print(\"List of available dataset configurations/subsets in the PubChemQC-B3LYP dataset:\")\n",
    "config_names"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0a925405",
   "metadata": {},
   "outputs": [],
   "source": [
    "# get the list of all available dataset splits in the PubChemQC-B3LYP dataset\n",
    "split_names = get_dataset_split_names(path, name)\n",
    "\n",
    "# print the retrieved information about the PubChemQC-B3LYP dataset\n",
    "print(f\"List of available dataset splits in the PubChemQC-B3LYP dataset:\")\n",
    "split_names"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2534c098",
   "metadata": {},
   "outputs": [],
   "source": [
    "# get the default configuration name of the PubChemQC-B3LYP dataset\n",
    "default_config_name = get_dataset_default_config_name(path)\n",
    "\n",
    "# print the retrieved information about the PubChemQC-B3LYP dataset\n",
    "print(f\"Default configuration name of the PubChemQC-B3LYP dataset: {default_config_name}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5e477ae9",
   "metadata": {},
   "source": [
    "We can also list the available features in our dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "edefb732",
   "metadata": {},
   "outputs": [],
   "source": [
    "list(config_info.features)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a6ad4a42",
   "metadata": {},
   "source": [
    "The `list()` function can be removed from the aforementioned command in order to\n",
    "create a dictionary of features alongside their corresponding data types.\n",
    "\n",
    "We can also access the citation information using the `citation` attribute\n",
    "as shown below"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2749b3e7",
   "metadata": {},
   "outputs": [],
   "source": [
    "pprint(config_info.citation,\n",
    "       indent=4,\n",
    "       width=100,\n",
    "       compact=True)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}