Spaces:
Sleeping
Sleeping
File size: 7,283 Bytes
00f95e9 070c7da d828aa5 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da d828aa5 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 d828aa5 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 070c7da 00f95e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
{
"cells": [
{
"cell_type": "markdown",
"id": "4b572b87",
"metadata": {},
"source": [
"# Working with Metadata"
]
},
{
"cell_type": "markdown",
"id": "a11900d1",
"metadata": {},
"source": [
"This demo focuses on getting to know the data we are going to work with before\n",
"downloading it and start processing it. Here, we are going to use the\n",
"[PubChemQC-B3LYP/6-31G*//PM6\n",
"Dataset](https://huggingface.co/datasets/molssiai-hub/pubchemqc-b3lyp) (PubChemQC-B3LYP for short)\n",
"from the [MolSSI AI Hub](https://huggingface.co/molssiai-hub).\n",
"\n",
"\n",
"In order to be able to interact with the data, we need to import the necessary libraries."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2493a0c3-4b27-496a-9514-32fb4941c94e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import datasets # Hugging Face datasets library\n",
"from datasets import (\n",
" get_dataset_config_info, # Get information about a dataset configurations/subsets\n",
" get_dataset_config_names, # Get the list of names of all dataset configurations/subsets\n",
" get_dataset_split_names, # Get the list of names of all dataset splits\n",
" get_dataset_default_config_name # Get the default configuration name of a dataset\n",
")\n",
"from pprint import pprint # Pretty print"
]
},
{
"cell_type": "markdown",
"id": "b362b39e",
"metadata": {},
"source": [
"After importing the modules, we set a few variables that will be used throughout\n",
"this demo."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c4892171-f79f-4eee-99db-a21d11b09e5c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# path to the dataset repository on the Hugging Face Hub\n",
"path = \"molssiai-hub/pubchemqc-b3lyp\"\n",
"\n",
"# set the dataset configuration/subset name\n",
"name = \"b3lyp_pm6\"\n",
"\n",
"# set the dataset split\n",
"split = \"train\""
]
},
{
"cell_type": "markdown",
"id": "affb8bf2",
"metadata": {},
"source": [
"The modules and functions we imported allow us to inspect our dataset for a wide\n",
"range of metadata and information without actually downloading it on disk. For\n",
"example, we can access the list of all available configurations/subsets, splits,\n",
"and the default configuration name in our dataset.\n",
"\n",
"The `get_dataset_config_info` function returns a `datasets.info.DatasetInfo` \n",
"object which contains the metadata of our dataset configuration all in one place."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b0b1b1cf",
"metadata": {},
"outputs": [],
"source": [
"# get the information about the PubChemQC-B3LYP dataset configuration/subset\n",
"config_info = get_dataset_config_info(path, name, trust_remote_code=True)\n",
"\n",
"# print the retrieved information about the PubChemQC-B3LYP dataset\n",
"print(\"Information about the PubChemQC-B3LYP dataset configuration/subset:\")\n",
"pprint(config_info,\n",
" indent=4,\n",
" width=100,\n",
" compact=True)"
]
},
{
"cell_type": "markdown",
"id": "c01684ca",
"metadata": {},
"source": [
"Processing a lengthy output is not always convenient. In order to make the\n",
"metadata inspection easier, we can access specific attributes of the\n",
"`datasets.info.DatasetInfo` instance directly. For example, the `description`\n",
"attribute can provide access to the content of the *description* field in the\n",
"dataset configuration as shown below"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d7ca2dff",
"metadata": {},
"outputs": [],
"source": [
"pprint(config_info.description,\n",
" indent=4,\n",
" width=100,\n",
" compact=True)"
]
},
{
"cell_type": "markdown",
"id": "7564c7f6",
"metadata": {},
"source": [
"We can use other imported `get_dataset_*` helper functions to directly access\n",
"the metadata and circumvent the creation of a `datasets.info.DatasetInfo` object\n",
"as shown below"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f50da911",
"metadata": {},
"outputs": [],
"source": [
"# get the list of all available dataset configurations/subsets in the PubChemQC-B3LYP dataset\n",
"config_names = get_dataset_config_names(path)\n",
"\n",
"# print the retrieved information about the PubChemQC-B3LYP dataset\n",
"print(\"List of available dataset configurations/subsets in the PubChemQC-B3LYP dataset:\")\n",
"config_names"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0a925405",
"metadata": {},
"outputs": [],
"source": [
"# get the list of all available dataset splits in the PubChemQC-B3LYP dataset\n",
"split_names = get_dataset_split_names(path, name)\n",
"\n",
"# print the retrieved information about the PubChemQC-B3LYP dataset\n",
"print(f\"List of available dataset splits in the PubChemQC-B3LYP dataset:\")\n",
"split_names"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2534c098",
"metadata": {},
"outputs": [],
"source": [
"# get the default configuration name of the PubChemQC-B3LYP dataset\n",
"default_config_name = get_dataset_default_config_name(path)\n",
"\n",
"# print the retrieved information about the PubChemQC-B3LYP dataset\n",
"print(f\"Default configuration name of the PubChemQC-B3LYP dataset: {default_config_name}\")"
]
},
{
"cell_type": "markdown",
"id": "5e477ae9",
"metadata": {},
"source": [
"We can also list the available features in our dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "edefb732",
"metadata": {},
"outputs": [],
"source": [
"list(config_info.features)"
]
},
{
"cell_type": "markdown",
"id": "a6ad4a42",
"metadata": {},
"source": [
"The `list()` function can be removed from the aforementioned command in order to\n",
"create a dictionary of features alongside their corresponding data types.\n",
"\n",
"We can also access the citation information using the `citation` attribute\n",
"as shown below"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2749b3e7",
"metadata": {},
"outputs": [],
"source": [
"pprint(config_info.citation,\n",
" indent=4,\n",
" width=100,\n",
" compact=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|