Spaces:
Sleeping
Sleeping
File size: 17,521 Bytes
1ac0e91 45c901d 1ac0e91 579d749 45c901d 1ac0e91 45c901d 579d749 45c901d 1ac0e91 45c901d 579d749 45c901d 579d749 45c901d 1dd0e5b 45c901d 579d749 45c901d 579d749 45c901d 579d749 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 579d749 45c901d 579d749 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 579d749 1ac0e91 579d749 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1dd0e5b 45c901d 1ac0e91 1dd0e5b 1ac0e91 1dd0e5b 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d 1ac0e91 45c901d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
import gradio as gr
import time
import yaml
from langchain.prompts.chat import ChatPromptTemplate
from huggingface_hub import hf_hub_download
from spinoza_project.source.backend.llm_utils import get_llm, get_vectorstore
from spinoza_project.source.backend.document_store import pickle_to_document_store
from spinoza_project.source.backend.get_prompts import get_qa_prompts
from spinoza_project.source.frontend.utils import (
make_html_source,
make_html_presse_source,
parse_output_llm_with_sources,
init_env,
)
from spinoza_project.source.backend.prompt_utils import (
to_chat_instruction,
SpecialTokens,
)
from assets.utils_javascript import (
accordion_trigger,
accordion_trigger_end,
accordion_trigger_spinoza,
accordion_trigger_spinoza_end,
)
init_env()
with open("./spinoza_project/config.yaml") as f:
config = yaml.full_load(f)
prompts = {}
for source in config["prompt_naming"]:
with open(f"./spinoza_project/prompt_{source}.yaml") as f:
prompts[source] = yaml.full_load(f)
## Building LLM
print("Building LLM")
model = "gpt35turbo"
llm = get_llm()
## Loading_tools
print("Loading Databases")
qdrants = {
tab: pickle_to_document_store(
hf_hub_download(
repo_id="SpinozaProject/spinoza-database",
filename=f"database_{tab}.pickle",
repo_type="dataset",
)
)
for tab in config["prompt_naming"]
if tab != "Presse"
}
bdd_presse = get_vectorstore("presse")
## Load Prompts
print("Loading Prompts")
chat_qa_prompts, chat_reformulation_prompts, chat_summarize_memory_prompts = {}, {}, {}
for source, prompt in prompts.items():
chat_qa_prompt, chat_reformulation_prompt = get_qa_prompts(config, prompt)
chat_qa_prompts[source] = chat_qa_prompt
chat_reformulation_prompts[source] = chat_reformulation_prompt
with open("./assets/style.css", "r") as f:
css = f.read()
special_tokens = SpecialTokens(config)
synthesis_template = """You are a factual journalist that summarize the secialized awnsers from thechnical sources.
Based on the folowing question:
{question}
And the following expert answer:
{answers}
Answer the question, in French.
When using legal awnsers, keep tracking of the name of the articles.
When using ADEME awnsers, name the sources that are mainly used.
List the different element mentionned, and highlight the agreement points between the sources, as well as the contradictions or differences.
Generate the answer as markdown, with an aerated layout, and headlines in bold
Start by a general summary, agreement and contracdiction, and then go into detail without paraphasing the experts awnsers.
"""
synthesis_prompt = to_chat_instruction(synthesis_template, special_tokens)
synthesis_prompt_template = ChatPromptTemplate.from_messages([synthesis_prompt])
def zip_longest_fill(*args, fillvalue=None):
# zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
iterators = [iter(it) for it in args]
num_active = len(iterators)
if not num_active:
return
cond = True
fillvalues = [None] * len(iterators)
while cond:
values = []
for i, it in enumerate(iterators):
try:
value = next(it)
except StopIteration:
value = fillvalues[i]
values.append(value)
new_cond = False
for i, elt in enumerate(values):
if elt != fillvalues[i]:
new_cond = True
cond = new_cond
fillvalues = values.copy()
yield tuple(values)
def format_question(question):
return f"{question}" # ###
def parse_question(question):
x = question.replace("<p>", "").replace("</p>\n", "")
if "### " in x:
return x.split("### ")[1]
return x
def reformulate(question, tab, config=config):
if tab in list(config["tabs"].keys()):
return llm.stream(
chat_reformulation_prompts[config["source_mapping"][tab]],
{"question": parse_question(question)},
)
else:
return iter([None] * 5)
def reformulate_single_question(question, tab, config=config):
for elt in reformulate(question, tab, config=config):
time.sleep(0.02)
yield elt
def reformulate_questions(question, config=config):
for elt in zip_longest_fill(
*[reformulate(question, tab, config=config) for tab in config["tabs"]]
):
time.sleep(0.02)
yield elt
def add_question(question):
return question
def answer(question, source, tab, config=config):
if tab in list(config["tabs"].keys()):
if len(source) < 10:
return iter(["Aucune source trouvée, veuillez reformuler votre question"])
else:
return llm.stream(
chat_qa_prompts[config["source_mapping"][tab]],
{
"question": parse_question(question),
"sources": source.replace("<p>", "").replace("</p>\n", ""),
},
)
else:
return iter([None] * 5)
def answer_single_question(source, question, tab, config=config):
for elt in answer(question, source, tab, config=config):
time.sleep(0.02)
yield elt
def answer_questions(*questions_sources, config=config):
questions = [elt for elt in questions_sources[: len(questions_sources) // 2]]
sources = [elt for elt in questions_sources[len(questions_sources) // 2 :]]
for elt in zip_longest_fill(
*[
answer(question, source, tab, config=config)
for question, source, tab in zip(questions, sources, config["tabs"])
]
):
time.sleep(0.02)
yield [
[(question, parse_output_llm_with_sources(ans))]
for question, ans in zip(questions, elt)
]
def get_sources(questions, qdrants=qdrants, bdd_presse=bdd_presse, config=config):
k = config["num_document_retrieved"]
min_similarity = config["min_similarity"]
formated = []
text = []
for i, (question, tab) in enumerate(zip(questions, list(config["tabs"].keys()))):
sources = (
(
bdd_presse.similarity_search_with_relevance_scores(
question.replace("<p>", "").replace("</p>\n", ""),
k=k,
)
)
if tab == "Presse"
else qdrants[
config["source_mapping"][tab]
].similarity_search_with_relevance_scores(
config["query_preprompt"]
+ question.replace("<p>", "").replace("</p>\n", ""),
k=k,
)
)
sources = [
(doc, score) for doc, score in sources
] # if score >= min_similarity]
formated.extend(
[
make_html_presse_source(source[0], j, source[1], config)
for j, source in zip(range(k * i + 1, k * (i + 1) + 1), sources)
]
if tab == "Presse"
else [
make_html_source(source[0], j, source[1], config)
for j, source in zip(range(k * i + 1, k * (i + 1) + 1), sources)
]
)
text.extend(
[
"\n\n".join(
[
f"Doc {str(j)} with source type {source[0].metadata.get('file_source_type')}:\n"
+ source[0].page_content
for j, source in zip(range(k * i + 1, k * (i + 1) + 1), sources)
]
)
]
)
formated = "".join(formated)
return formated, text
def retrieve_sources(
*questions, qdrants=qdrants, bdd_presse=bdd_presse, config=config
):
formated_sources, text_sources = get_sources(questions, qdrants, bdd_presse, config)
return (formated_sources, *text_sources)
def get_synthesis(question, *answers, config=config):
answer = []
for i, tab in enumerate(config["tabs"]):
if (len(str(answers[i])) >= 100):
answer.append(
f"{tab}\n{answers[i]}".replace("<p>", "").replace("</p>\n", "")
)
if len(answer) == 0:
return "Aucune source n'a pu être identifiée pour répondre, veuillez modifier votre question"
else:
for elt in llm.stream(
synthesis_prompt_template,
{
"question": question.replace("<p>", "").replace("</p>\n", ""),
"answers": "\n\n".join(answer),
},
):
time.sleep(0.01)
yield [(question, elt)]
theme = gr.themes.Base(
primary_hue="blue",
secondary_hue="red",
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)
with open("./assets/style.css", "r") as f:
css = f.read()
with open("./assets/source_information.md", "r") as f:
source_information = f.read()
def start_agents():
gr.Info(message="The agents and Spinoza are loading...", duration=3)
def end_agents():
gr.Info(
message="The agents and Spinoza have finished answering your question",
duration=3,
)
def next_call():
print("Next call")
init_prompt = """
Hello, I am Spinoza, a conversational assistant designed to help you in your journalistic journey. I will answer your questions based **on the provided sources**.
⚠️ Limitations
*Please note that this chatbot is in an early stage phase, it is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*
What do you want to learn ?
"""
with gr.Blocks(
title=f"🔍 Spinoza",
css=css,
theme=theme,
) as demo:
chatbots = {}
question = gr.State("")
docs_textbox = gr.State([""])
agent_questions = {elt: gr.State("") for elt in config["tabs"]}
component_sources = {elt: gr.State("") for elt in config["tabs"]}
text_sources = {elt: gr.State("") for elt in config["tabs"]}
tab_states = {elt: gr.State(elt) for elt in config["tabs"]}
chatbot_states = [
gr.State(name)
for name in ["science", "presse", "politique", "legal", "spinoza"]
]
with gr.Tab("Q&A", elem_id="main-component"):
with gr.Row(elem_id="chatbot-row"):
with gr.Column(scale=2, elem_id="center-panel"):
with gr.Group(elem_id="chatbot-group"):
with gr.Accordion(
"Science agent",
open=False,
elem_id="accordion-science",
elem_classes="accordion",
):
chatbots[list(config["tabs"].keys())[0]] = gr.Chatbot(
show_copy_button=True,
show_share_button=False,
show_label=False,
elem_id="chatbot-science",
layout="panel",
avatar_images=(
"./assets/logos/help.png",
None,
),
)
with gr.Accordion(
"Law agent",
open=False,
elem_id="accordion-legal",
elem_classes="accordion",
):
chatbots[list(config["tabs"].keys())[1]] = gr.Chatbot(
show_copy_button=True,
show_share_button=False,
show_label=False,
elem_id="chatbot-legal",
layout="panel",
avatar_images=(
"./assets/logos/help.png",
None,
),
)
with gr.Accordion(
"Politics agent",
open=False,
elem_id="accordion-politique",
elem_classes="accordion",
):
chatbots[list(config["tabs"].keys())[2]] = gr.Chatbot(
show_copy_button=True,
show_share_button=False,
show_label=False,
elem_id="chatbot-politique",
layout="panel",
avatar_images=(
"./assets/logos/help.png",
None, # "https://i.ibb.co/cN0czLp/celsius-logo.png",
),
)
with gr.Accordion(
"ADEME agent",
open=False,
elem_id="accordion-ademe",
elem_classes="accordion",
):
chatbots[list(config["tabs"].keys())[3]] = gr.Chatbot(
show_copy_button=True,
show_share_button=False,
show_label=False,
elem_id="chatbot-ademe",
layout="panel",
avatar_images=(
"./assets/logos/help.png",
None, # "https://i.ibb.co/cN0czLp/celsius-logo.png",
),
)
with gr.Accordion(
"Press agent",
open=False,
elem_id="accordion-presse",
elem_classes="accordion",
):
chatbots[list(config["tabs"].keys())[4]] = gr.Chatbot(
show_copy_button=True,
show_share_button=False,
show_label=False,
elem_id="chatbot-presse",
layout="panel",
avatar_images=(
"./assets/logos/help.png",
None, # "https://i.ibb.co/cN0czLp/celsius-logo.png",
),
)
with gr.Accordion(
"Spinoza",
open=True,
elem_id="accordion-spinoza",
elem_classes="accordion",
):
chatbots["spinoza"] = gr.Chatbot(
value=[(None, init_prompt)],
show_copy_button=True,
show_share_button=False,
show_label=False,
elem_id="chatbot-spinoza",
layout="panel",
avatar_images=(
"./assets/logos/help.png",
"./assets/logos/spinoza.png",
),
)
with gr.Row(elem_id="input-message"):
ask = gr.Textbox(
placeholder="Ask me anything here!",
show_label=False,
scale=7,
lines=1,
interactive=True,
elem_id="input-textbox",
)
with gr.Column(scale=1, variant="panel", elem_id="right-panel"):
with gr.TabItem("Sources", elem_id="tab-sources", id=0):
sources_textbox = gr.HTML(
show_label=False, elem_id="sources-textbox"
)
with gr.Tab("Source information", elem_id="source-component"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(source_information)
with gr.Tab("Contact", elem_id="contact-component"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("For any issue contact **[email protected]**.")
ask.submit(start_agents, inputs=[], outputs=[], js=accordion_trigger()).then(
fn=reformulate_questions,
inputs=[ask],
outputs=[agent_questions[tab] for tab in config["tabs"]],
).then(
fn=retrieve_sources,
inputs=[agent_questions[tab] for tab in config["tabs"]],
outputs=[sources_textbox] + [text_sources[tab] for tab in config["tabs"]],
).then(
fn=answer_questions,
inputs=[agent_questions[tab] for tab in config["tabs"]]
+ [text_sources[tab] for tab in config["tabs"]],
outputs=[chatbots[tab] for tab in config["tabs"]],
).then(
fn=next_call, inputs=[], outputs=[], js=accordion_trigger_end()
).then(
fn=next_call, inputs=[], outputs=[], js=accordion_trigger_spinoza()
).then(
fn=get_synthesis,
inputs=[agent_questions[list(config["tabs"].keys())[1]]]
+ [chatbots[tab] for tab in config["tabs"]],
outputs=[chatbots["spinoza"]],
).then(
fn=next_call, inputs=[], outputs=[], js=accordion_trigger_spinoza_end()
).then(
fn=end_agents, inputs=[], outputs=[]
)
if __name__ == "__main__":
demo.queue().launch(share=True, debug=True)
|