spinoza_testing / app.py
momenaca's picture
update major frontend and backend features
1ac0e91
raw
history blame
17.5 kB
import gradio as gr
import time
import yaml
from langchain.prompts.chat import ChatPromptTemplate
from huggingface_hub import hf_hub_download
from spinoza_project.source.backend.llm_utils import get_llm, get_vectorstore
from spinoza_project.source.backend.document_store import pickle_to_document_store
from spinoza_project.source.backend.get_prompts import get_qa_prompts
from spinoza_project.source.frontend.utils import (
make_html_source,
make_html_presse_source,
parse_output_llm_with_sources,
init_env,
)
from spinoza_project.source.backend.prompt_utils import (
to_chat_instruction,
SpecialTokens,
)
from assets.utils_javascript import (
accordion_trigger,
accordion_trigger_end,
accordion_trigger_spinoza,
accordion_trigger_spinoza_end,
)
init_env()
with open("./spinoza_project/config.yaml") as f:
config = yaml.full_load(f)
prompts = {}
for source in config["prompt_naming"]:
with open(f"./spinoza_project/prompt_{source}.yaml") as f:
prompts[source] = yaml.full_load(f)
## Building LLM
print("Building LLM")
model = "gpt35turbo"
llm = get_llm()
## Loading_tools
print("Loading Databases")
qdrants = {
tab: pickle_to_document_store(
hf_hub_download(
repo_id="SpinozaProject/spinoza-database",
filename=f"database_{tab}.pickle",
repo_type="dataset",
)
)
for tab in config["prompt_naming"]
if tab != "Presse"
}
bdd_presse = get_vectorstore("presse")
## Load Prompts
print("Loading Prompts")
chat_qa_prompts, chat_reformulation_prompts, chat_summarize_memory_prompts = {}, {}, {}
for source, prompt in prompts.items():
chat_qa_prompt, chat_reformulation_prompt = get_qa_prompts(config, prompt)
chat_qa_prompts[source] = chat_qa_prompt
chat_reformulation_prompts[source] = chat_reformulation_prompt
with open("./assets/style.css", "r") as f:
css = f.read()
special_tokens = SpecialTokens(config)
synthesis_template = """You are a factual journalist that summarize the secialized awnsers from thechnical sources.
Based on the folowing question:
{question}
And the following expert answer:
{answers}
Answer the question, in French.
When using legal awnsers, keep tracking of the name of the articles.
When using ADEME awnsers, name the sources that are mainly used.
List the different element mentionned, and highlight the agreement points between the sources, as well as the contradictions or differences.
Generate the answer as markdown, with an aerated layout, and headlines in bold
Start by a general summary, agreement and contracdiction, and then go into detail without paraphasing the experts awnsers.
"""
synthesis_prompt = to_chat_instruction(synthesis_template, special_tokens)
synthesis_prompt_template = ChatPromptTemplate.from_messages([synthesis_prompt])
def zip_longest_fill(*args, fillvalue=None):
# zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
iterators = [iter(it) for it in args]
num_active = len(iterators)
if not num_active:
return
cond = True
fillvalues = [None] * len(iterators)
while cond:
values = []
for i, it in enumerate(iterators):
try:
value = next(it)
except StopIteration:
value = fillvalues[i]
values.append(value)
new_cond = False
for i, elt in enumerate(values):
if elt != fillvalues[i]:
new_cond = True
cond = new_cond
fillvalues = values.copy()
yield tuple(values)
def format_question(question):
return f"{question}" # ###
def parse_question(question):
x = question.replace("<p>", "").replace("</p>\n", "")
if "### " in x:
return x.split("### ")[1]
return x
def reformulate(question, tab, config=config):
if tab in list(config["tabs"].keys()):
return llm.stream(
chat_reformulation_prompts[config["source_mapping"][tab]],
{"question": parse_question(question)},
)
else:
return iter([None] * 5)
def reformulate_single_question(question, tab, config=config):
for elt in reformulate(question, tab, config=config):
time.sleep(0.02)
yield elt
def reformulate_questions(question, config=config):
for elt in zip_longest_fill(
*[reformulate(question, tab, config=config) for tab in config["tabs"]]
):
time.sleep(0.02)
yield elt
def add_question(question):
return question
def answer(question, source, tab, config=config):
if tab in list(config["tabs"].keys()):
if len(source) < 10:
return iter(["Aucune source trouvée, veuillez reformuler votre question"])
else:
return llm.stream(
chat_qa_prompts[config["source_mapping"][tab]],
{
"question": parse_question(question),
"sources": source.replace("<p>", "").replace("</p>\n", ""),
},
)
else:
return iter([None] * 5)
def answer_single_question(source, question, tab, config=config):
for elt in answer(question, source, tab, config=config):
time.sleep(0.02)
yield elt
def answer_questions(*questions_sources, config=config):
questions = [elt for elt in questions_sources[: len(questions_sources) // 2]]
sources = [elt for elt in questions_sources[len(questions_sources) // 2 :]]
for elt in zip_longest_fill(
*[
answer(question, source, tab, config=config)
for question, source, tab in zip(questions, sources, config["tabs"])
]
):
time.sleep(0.02)
yield [
[(question, parse_output_llm_with_sources(ans))]
for question, ans in zip(questions, elt)
]
def get_sources(questions, qdrants=qdrants, bdd_presse=bdd_presse, config=config):
k = config["num_document_retrieved"]
min_similarity = config["min_similarity"]
formated = []
text = []
for i, (question, tab) in enumerate(zip(questions, list(config["tabs"].keys()))):
sources = (
(
bdd_presse.similarity_search_with_relevance_scores(
question.replace("<p>", "").replace("</p>\n", ""),
k=k,
)
)
if tab == "Presse"
else qdrants[
config["source_mapping"][tab]
].similarity_search_with_relevance_scores(
config["query_preprompt"]
+ question.replace("<p>", "").replace("</p>\n", ""),
k=k,
)
)
sources = [
(doc, score) for doc, score in sources
] # if score >= min_similarity]
formated.extend(
[
make_html_presse_source(source[0], j, source[1], config)
for j, source in zip(range(k * i + 1, k * (i + 1) + 1), sources)
]
if tab == "Presse"
else [
make_html_source(source[0], j, source[1], config)
for j, source in zip(range(k * i + 1, k * (i + 1) + 1), sources)
]
)
text.extend(
[
"\n\n".join(
[
f"Doc {str(j)} with source type {source[0].metadata.get('file_source_type')}:\n"
+ source[0].page_content
for j, source in zip(range(k * i + 1, k * (i + 1) + 1), sources)
]
)
]
)
formated = "".join(formated)
return formated, text
def retrieve_sources(
*questions, qdrants=qdrants, bdd_presse=bdd_presse, config=config
):
formated_sources, text_sources = get_sources(questions, qdrants, bdd_presse, config)
return (formated_sources, *text_sources)
def get_synthesis(question, *answers, config=config):
answer = []
for i, tab in enumerate(config["tabs"]):
if (len(str(answers[i])) >= 100):
answer.append(
f"{tab}\n{answers[i]}".replace("<p>", "").replace("</p>\n", "")
)
if len(answer) == 0:
return "Aucune source n'a pu être identifiée pour répondre, veuillez modifier votre question"
else:
for elt in llm.stream(
synthesis_prompt_template,
{
"question": question.replace("<p>", "").replace("</p>\n", ""),
"answers": "\n\n".join(answer),
},
):
time.sleep(0.01)
yield [(question, elt)]
theme = gr.themes.Base(
primary_hue="blue",
secondary_hue="red",
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)
with open("./assets/style.css", "r") as f:
css = f.read()
with open("./assets/source_information.md", "r") as f:
source_information = f.read()
def start_agents():
gr.Info(message="The agents and Spinoza are loading...", duration=3)
def end_agents():
gr.Info(
message="The agents and Spinoza have finished answering your question",
duration=3,
)
def next_call():
print("Next call")
init_prompt = """
Hello, I am Spinoza, a conversational assistant designed to help you in your journalistic journey. I will answer your questions based **on the provided sources**.
⚠️ Limitations
*Please note that this chatbot is in an early stage phase, it is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*
What do you want to learn ?
"""
with gr.Blocks(
title=f"🔍 Spinoza",
css=css,
theme=theme,
) as demo:
chatbots = {}
question = gr.State("")
docs_textbox = gr.State([""])
agent_questions = {elt: gr.State("") for elt in config["tabs"]}
component_sources = {elt: gr.State("") for elt in config["tabs"]}
text_sources = {elt: gr.State("") for elt in config["tabs"]}
tab_states = {elt: gr.State(elt) for elt in config["tabs"]}
chatbot_states = [
gr.State(name)
for name in ["science", "presse", "politique", "legal", "spinoza"]
]
with gr.Tab("Q&A", elem_id="main-component"):
with gr.Row(elem_id="chatbot-row"):
with gr.Column(scale=2, elem_id="center-panel"):
with gr.Group(elem_id="chatbot-group"):
with gr.Accordion(
"Science agent",
open=False,
elem_id="accordion-science",
elem_classes="accordion",
):
chatbots[list(config["tabs"].keys())[0]] = gr.Chatbot(
show_copy_button=True,
show_share_button=False,
show_label=False,
elem_id="chatbot-science",
layout="panel",
avatar_images=(
"./assets/logos/help.png",
None,
),
)
with gr.Accordion(
"Law agent",
open=False,
elem_id="accordion-legal",
elem_classes="accordion",
):
chatbots[list(config["tabs"].keys())[1]] = gr.Chatbot(
show_copy_button=True,
show_share_button=False,
show_label=False,
elem_id="chatbot-legal",
layout="panel",
avatar_images=(
"./assets/logos/help.png",
None,
),
)
with gr.Accordion(
"Politics agent",
open=False,
elem_id="accordion-politique",
elem_classes="accordion",
):
chatbots[list(config["tabs"].keys())[2]] = gr.Chatbot(
show_copy_button=True,
show_share_button=False,
show_label=False,
elem_id="chatbot-politique",
layout="panel",
avatar_images=(
"./assets/logos/help.png",
None, # "https://i.ibb.co/cN0czLp/celsius-logo.png",
),
)
with gr.Accordion(
"ADEME agent",
open=False,
elem_id="accordion-ademe",
elem_classes="accordion",
):
chatbots[list(config["tabs"].keys())[3]] = gr.Chatbot(
show_copy_button=True,
show_share_button=False,
show_label=False,
elem_id="chatbot-ademe",
layout="panel",
avatar_images=(
"./assets/logos/help.png",
None, # "https://i.ibb.co/cN0czLp/celsius-logo.png",
),
)
with gr.Accordion(
"Press agent",
open=False,
elem_id="accordion-presse",
elem_classes="accordion",
):
chatbots[list(config["tabs"].keys())[4]] = gr.Chatbot(
show_copy_button=True,
show_share_button=False,
show_label=False,
elem_id="chatbot-presse",
layout="panel",
avatar_images=(
"./assets/logos/help.png",
None, # "https://i.ibb.co/cN0czLp/celsius-logo.png",
),
)
with gr.Accordion(
"Spinoza",
open=True,
elem_id="accordion-spinoza",
elem_classes="accordion",
):
chatbots["spinoza"] = gr.Chatbot(
value=[(None, init_prompt)],
show_copy_button=True,
show_share_button=False,
show_label=False,
elem_id="chatbot-spinoza",
layout="panel",
avatar_images=(
"./assets/logos/help.png",
"./assets/logos/spinoza.png",
),
)
with gr.Row(elem_id="input-message"):
ask = gr.Textbox(
placeholder="Ask me anything here!",
show_label=False,
scale=7,
lines=1,
interactive=True,
elem_id="input-textbox",
)
with gr.Column(scale=1, variant="panel", elem_id="right-panel"):
with gr.TabItem("Sources", elem_id="tab-sources", id=0):
sources_textbox = gr.HTML(
show_label=False, elem_id="sources-textbox"
)
with gr.Tab("Source information", elem_id="source-component"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(source_information)
with gr.Tab("Contact", elem_id="contact-component"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("For any issue contact **[email protected]**.")
ask.submit(start_agents, inputs=[], outputs=[], js=accordion_trigger()).then(
fn=reformulate_questions,
inputs=[ask],
outputs=[agent_questions[tab] for tab in config["tabs"]],
).then(
fn=retrieve_sources,
inputs=[agent_questions[tab] for tab in config["tabs"]],
outputs=[sources_textbox] + [text_sources[tab] for tab in config["tabs"]],
).then(
fn=answer_questions,
inputs=[agent_questions[tab] for tab in config["tabs"]]
+ [text_sources[tab] for tab in config["tabs"]],
outputs=[chatbots[tab] for tab in config["tabs"]],
).then(
fn=next_call, inputs=[], outputs=[], js=accordion_trigger_end()
).then(
fn=next_call, inputs=[], outputs=[], js=accordion_trigger_spinoza()
).then(
fn=get_synthesis,
inputs=[agent_questions[list(config["tabs"].keys())[1]]]
+ [chatbots[tab] for tab in config["tabs"]],
outputs=[chatbots["spinoza"]],
).then(
fn=next_call, inputs=[], outputs=[], js=accordion_trigger_spinoza_end()
).then(
fn=end_agents, inputs=[], outputs=[]
)
if __name__ == "__main__":
demo.queue().launch(share=True, debug=True)