momenaca's picture
add azure search vectorstore link for presse
579d749
raw
history blame
2.91 kB
from langchain_openai import AzureChatOpenAI
from msal import ConfidentialClientApplication
from langchain_openai import AzureOpenAIEmbeddings
from langchain.vectorstores.azuresearch import AzureSearch
import os
class LLM:
def __init__(self, llm):
self.llm = llm
self.callbacks = []
def stream(self, prompt, prompt_arguments):
self.llm.streaming = True
streamed_content = self.llm.stream(prompt.format_messages(**prompt_arguments))
output = ""
for op in streamed_content:
output += op.content
yield output
def get_prediction(self, prompt, prompt_arguments):
self.llm.callbacks = self.callbacks
return self.llm.predict_messages(
prompt.format_messages(**prompt_arguments)
).content
async def get_aprediction(self, prompt, prompt_arguments):
self.llm.callbacks = self.callbacks
prediction = await self.llm.apredict_messages(
prompt.format_messages(**prompt_arguments)
)
return prediction
async def get_apredictions(self, prompts, prompts_arguments):
self.llm.callbacks = self.callbacks
predictions = []
for prompt_, prompt_args_ in zip(prompts.keys(), prompts_arguments):
prediction = await self.llm.apredict_messages(
prompts[prompt_].format_messages(**prompt_args_)
)
predictions.append(prediction.content)
return predictions
def get_token() -> str | None:
app = ConfidentialClientApplication(
client_id=os.getenv("CLIENT_ID"),
client_credential=os.getenv("CLIENT_SECRET"),
authority=f"https://login.microsoftonline.com/{os.getenv('TENANT_ID')}",
)
result = app.acquire_token_for_client(scopes=[os.getenv("SCOPE")])
if result is not None:
return result["access_token"]
def get_llm():
os.environ["OPENAI_API_KEY"] = get_token()
os.environ["AZURE_OPENAI_ENDPOINT"] = (
f"{os.getenv('OPENAI_API_ENDPOINT')}{os.getenv('DEPLOYMENT_ID')}/chat/completions?api-version={os.getenv('OPENAI_API_VERSION')}"
)
return LLM(AzureChatOpenAI())
def get_vectorstore(index_name, model="text-embedding-ada-002"):
os.environ["AZURE_OPENAI_ENDPOINT"] = (
f"{os.getenv('OPENAI_API_ENDPOINT')}{os.getenv('DEPLOYMENT_EMB_ID')}/embeddings?api-version={os.getenv('OPENAI_API_VERSION')}"
)
os.environ["AZURE_OPENAI_API_KEY"] = get_token()
aoai_embeddings = AzureOpenAIEmbeddings(
azure_deployment=model,
openai_api_version=os.getenv("OPENAI_API_VERSION"),
)
vector_store: AzureSearch = AzureSearch(
azure_search_endpoint=os.getenv("VECTOR_STORE_ADDRESS"),
azure_search_key=os.getenv("VECTOR_STORE_PASSWORD"),
index_name=index_name,
embedding_function=aoai_embeddings.embed_query,
)
return vector_store