momo commited on
Commit
a590e48
ยท
1 Parent(s): 18e6afb
Files changed (1) hide show
  1. app.py +1 -29
app.py CHANGED
@@ -6,34 +6,6 @@ from transformers import AutoTokenizer, BertForSequenceClassification, AutoModel
6
  from transformers import TextClassificationPipeline
7
  import gradio as gr
8
 
9
- # tokenizer = AutoTokenizer.from_pretrained('momo/KcELECTRA-base_Hate_speech_Privacy_Detection')
10
- # model = AutoModelForSequenceClassification.from_pretrained(
11
- # 'momo/KcELECTRA-base_Hate_speech_Privacy_Detection',
12
- # num_labels= 15,
13
- # problem_type="multi_label_classification"
14
- # )
15
-
16
- # pipe = TextClassificationPipeline(
17
- # model = model,
18
- # tokenizer = tokenizer,
19
- # return_all_scores=True,
20
- # function_to_apply='sigmoid'
21
- # )
22
-
23
- # def predict(text):
24
- # return pipe(text)[0]
25
-
26
- # iface = gr.Interface(
27
- # fn=predict,
28
- # inputs='text',
29
- # outputs='text',
30
- # examples=[["Hello! My name is Omar"]]
31
- # )
32
-
33
- # iface.launch()
34
-
35
-
36
-
37
  # global var
38
  MODEL_NAME = 'momo/KcBERT-base_Hate_speech_Privacy_Detection'
39
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
@@ -87,7 +59,7 @@ if __name__ == '__main__':
87
  #Create a gradio app with a button that calls predict()
88
  app = gr.Interface(
89
  fn=predict,
90
- inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], outputs=['text'],
91
  examples = [[MODEL_BUF["name"], text], [MODEL_BUF["name"], "4=๐Ÿฆ€ 4โ‰ ๐Ÿฆ€"]],
92
  title="ํ•œ๊ตญ์–ด ํ˜์˜คํ‘œํ˜„, ๊ฐœ์ธ์ •๋ณด ํŒ๋ณ„๊ธฐ (Korean Hate Speech and Privacy Detection)",
93
  description="Korean Hate Speech and Privacy Detection."
 
6
  from transformers import TextClassificationPipeline
7
  import gradio as gr
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  # global var
10
  MODEL_NAME = 'momo/KcBERT-base_Hate_speech_Privacy_Detection'
11
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
 
59
  #Create a gradio app with a button that calls predict()
60
  app = gr.Interface(
61
  fn=predict,
62
+ inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], outputs='text',
63
  examples = [[MODEL_BUF["name"], text], [MODEL_BUF["name"], "4=๐Ÿฆ€ 4โ‰ ๐Ÿฆ€"]],
64
  title="ํ•œ๊ตญ์–ด ํ˜์˜คํ‘œํ˜„, ๊ฐœ์ธ์ •๋ณด ํŒ๋ณ„๊ธฐ (Korean Hate Speech and Privacy Detection)",
65
  description="Korean Hate Speech and Privacy Detection."