Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from multiprocessing import cpu_count | |
import os | |
from generate_code import create_code, backgrounds, correction_map | |
from diffusers import ( | |
StableDiffusionControlNetPipeline, | |
ControlNetModel, | |
EulerAncestralDiscreteScheduler, | |
) | |
main_generator = torch.Generator() | |
# MONSTER_V2 = "/home/ubuntu/training/diffusers/examples/controlnet/out_model_2023-06-18_17-27-06" | |
# LANDMARKS = "/home/ubuntu/training/diffusers/examples/controlnet/out_model_2023-06-19_23-43-50/" | |
MONSTER_V2 = "monster-labs/V2" | |
LANDMARKS = "monster-labs/V2" | |
controlnet = [ | |
ControlNetModel.from_pretrained(MONSTER_V2, torch_dtype=torch.float16, subfolder="step1", use_auth_token=os.environ["HUGGINGFACE_TOKEN"]), | |
ControlNetModel.from_pretrained(LANDMARKS, torch_dtype=torch.float16, subfolder="step2", use_auth_token=os.environ["HUGGINGFACE_TOKEN"]), | |
] | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
#"runwayml/stable-diffusion-v1-5", | |
"n0madic/deliberate", | |
#"SG161222/Realistic_Vision_V1.4", | |
controlnet=controlnet, | |
safety_checker=None, | |
torch_dtype=torch.float16, | |
).to("cuda") | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
def inference_map( | |
qr_code_content: str, | |
prompt: str, | |
negative_prompt: str, | |
guidance_scale: float, | |
controlnet_conditioning_scale_0: float, | |
controlnet_conditioning_scale_1: float, | |
seed: int, | |
controlnet_start_0: float, | |
controlnet_start_1: float, | |
controlnet_end_0: float, | |
controlnet_end_1: float, | |
background: str, | |
error_correction: str, | |
margin: int, | |
module_size: int, | |
width: int, | |
height: int, | |
): | |
return inference( | |
qr_code_content, | |
prompt, | |
negative_prompt, | |
guidance_scale, | |
(controlnet_conditioning_scale_0, controlnet_conditioning_scale_1), | |
seed, | |
(controlnet_start_0, controlnet_start_1), | |
(controlnet_end_0, controlnet_end_1), | |
background, | |
error_correction, | |
margin, | |
module_size, | |
width, | |
height, | |
) | |
def inference( | |
qr_code_content: str, | |
prompt: str, | |
negative_prompt: str, | |
guidance_scale: float = 10.0, | |
controlnet_conditioning_scale: tuple[float, float] = (1.0, 1.0), | |
seed: int = -1, | |
controlnet_start: tuple[float, float] = (0.2, 0.0), | |
controlnet_end: tuple[float, float] = (0.95, 1.0), | |
background: str = "gray", | |
error_correction: str = "H", | |
margin: int = 1, | |
module_size: int = 16, | |
width: int = None, | |
height: int = None, | |
): | |
if prompt is None or prompt == "": | |
raise gr.Error("Prompt is required") | |
if qr_code_content is None or qr_code_content == "": | |
raise gr.Error("QR Code Content is required") | |
if background not in backgrounds: | |
raise gr.Error("Invalid background") | |
if error_correction not in correction_map: | |
raise gr.Error("Invalid error correction") | |
generator = torch.manual_seed(seed) if seed != -1 else main_generator | |
# print("Generating QR Code from content") | |
qrcode_images = create_code(qr_code_content, module_size, margin, background, error_correction, False, 1, True) | |
out = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=list(qrcode_images), | |
width=qrcode_images[0].width, | |
height=qrcode_images[0].height, | |
guidance_scale=float(guidance_scale), | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
# controlnet_start=controlnet_start, | |
# controlnet_end=controlnet_end, | |
controlnet_guidance=[(controlnet_start[0], controlnet_end[0]), (controlnet_start[1], controlnet_end[1])], | |
generator=generator, | |
num_inference_steps=40, | |
) | |
return out.images[0] | |
with gr.Blocks() as blocks: | |
with gr.Row(): | |
with gr.Column(): | |
qr_code_content = gr.Textbox( | |
label="QR Code Content", | |
info="QR Code Content or URL", | |
value="", | |
) | |
prompt = gr.Textbox( | |
label="Prompt", | |
info="Prompt that guides the generation towards", | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
value="ugly, disfigured, low quality, blurry, nsfw", | |
) | |
with gr.Accordion( | |
label="Params: The generated QR Code functionality is largely influenced by the parameters detailed below", | |
open=True, | |
): | |
controlnet_conditioning_scale_0 = gr.Slider( | |
minimum=0.5, | |
maximum=2.5, | |
step=0.01, | |
value=1.5, | |
label="Controlnet Conditioning Scale", | |
) | |
controlnet_conditioning_scale_1 = gr.Slider( | |
minimum=0.5, | |
maximum=2.5, | |
step=0.01, | |
value=1.0, | |
label="Controlnet Conditioning Scale (corners)", | |
) | |
guidance_scale = gr.Slider( | |
minimum=0.0, | |
maximum=25.0, | |
step=0.25, | |
value=7, | |
label="Guidance Scale", | |
) | |
seed = gr.Number( | |
minimum=-1, | |
maximum=9999999999, | |
step=1, | |
value=2313123, | |
label="Seed", | |
randomize=True, | |
) | |
controlnet_start_0 = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=0.2, | |
label="Controlnet Start 0", | |
) | |
controlnet_start_1 = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=0.0, | |
label="Controlnet Start 1", | |
) | |
controlnet_end_0 = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=0.95, | |
label="Controlnet End 0", | |
) | |
controlnet_end_1 = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=1.0, | |
label="Controlnet End 1", | |
) | |
background = gr.Dropdown( | |
label="Background", | |
choices=backgrounds, | |
value="gray", | |
) | |
error_correction = gr.Dropdown( | |
label="Error Correction", | |
choices=correction_map.keys(), | |
value="H", | |
) | |
margin = gr.Slider( | |
minimum=0, | |
maximum=10, | |
step=1, | |
value=1, | |
label="Margin", | |
) | |
module_size = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=16, | |
label="Module Size", | |
) | |
width = gr.Slider( | |
minimum=512, | |
maximum=1024, | |
step=256, | |
value=512, | |
label="Width", | |
) | |
height = gr.Slider( | |
minimum=512, | |
maximum=1024, | |
step=256, | |
value=512, | |
label="Height", | |
) | |
with gr.Row(): | |
run_btn = gr.Button("Run") | |
with gr.Column(): | |
result_image = gr.Image(label="Result Image", elem_id="result_image") | |
run_btn.click( | |
inference_map, | |
inputs=[ | |
qr_code_content, | |
prompt, | |
negative_prompt, | |
guidance_scale, | |
controlnet_conditioning_scale_0, | |
controlnet_conditioning_scale_1, | |
seed, | |
controlnet_start_0, | |
controlnet_start_1, | |
controlnet_end_0, | |
controlnet_end_1, | |
background, | |
error_correction, | |
margin, | |
module_size, | |
width, | |
height, | |
], | |
outputs=[result_image], | |
) | |
# login = os.environ.get("LOGIN", "admin") | |
# password = os.environ.get("PASSWORD", "1234") | |
blocks.queue(concurrency_count=1, max_size=40) | |
blocks.launch(share=False) | |
# blocks.launch(share=False, auth=(login, password)) | |