Spaces:
Runtime error
Runtime error
add app
Browse files- app.py +261 -0
- generate_code.py +103 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from multiprocessing import cpu_count
|
4 |
+
import os
|
5 |
+
from generate_code import create_code, backgrounds, correction_map
|
6 |
+
|
7 |
+
from diffusers import (
|
8 |
+
StableDiffusionControlNetPipeline,
|
9 |
+
ControlNetModel,
|
10 |
+
EulerAncestralDiscreteScheduler,
|
11 |
+
)
|
12 |
+
|
13 |
+
main_generator = torch.Generator()
|
14 |
+
|
15 |
+
# MONSTER_V2 = "/home/ubuntu/training/diffusers/examples/controlnet/out_model_2023-06-18_17-27-06"
|
16 |
+
# LANDMARKS = "/home/ubuntu/training/diffusers/examples/controlnet/out_model_2023-06-19_23-43-50/"
|
17 |
+
MONSTER_V2 = "monster-labs/V2"
|
18 |
+
LANDMARKS = "monster-labs/V2"
|
19 |
+
|
20 |
+
controlnet = [
|
21 |
+
ControlNetModel.from_pretrained(MONSTER_V2, torch_dtype=torch.float16, subfolder="step1"),
|
22 |
+
ControlNetModel.from_pretrained(LANDMARKS, torch_dtype=torch.float16, subfolder="step2"),
|
23 |
+
]
|
24 |
+
|
25 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
26 |
+
"runwayml/stable-diffusion-v1-5",
|
27 |
+
controlnet=controlnet,
|
28 |
+
safety_checker=None,
|
29 |
+
torch_dtype=torch.float16,
|
30 |
+
).to("cuda")
|
31 |
+
pipe.enable_xformers_memory_efficient_attention()
|
32 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
33 |
+
|
34 |
+
def inference_map(
|
35 |
+
qr_code_content: str,
|
36 |
+
prompt: str,
|
37 |
+
negative_prompt: str,
|
38 |
+
guidance_scale: float,
|
39 |
+
controlnet_conditioning_scale_0: float,
|
40 |
+
seed: int,
|
41 |
+
controlnet_start_0: float,
|
42 |
+
controlnet_start_1: float,
|
43 |
+
controlnet_end_0: float,
|
44 |
+
controlnet_end_1: float,
|
45 |
+
background: str,
|
46 |
+
error_correction: str,
|
47 |
+
margin: int,
|
48 |
+
module_size: int,
|
49 |
+
width: int,
|
50 |
+
height: int,
|
51 |
+
):
|
52 |
+
return inference(
|
53 |
+
qr_code_content,
|
54 |
+
prompt,
|
55 |
+
negative_prompt,
|
56 |
+
guidance_scale,
|
57 |
+
(controlnet_conditioning_scale_0, 1),
|
58 |
+
seed,
|
59 |
+
(controlnet_start_0, controlnet_start_1),
|
60 |
+
(controlnet_end_0, controlnet_end_1),
|
61 |
+
background,
|
62 |
+
error_correction,
|
63 |
+
margin,
|
64 |
+
module_size,
|
65 |
+
width,
|
66 |
+
height,
|
67 |
+
)
|
68 |
+
|
69 |
+
def inference(
|
70 |
+
qr_code_content: str,
|
71 |
+
prompt: str,
|
72 |
+
negative_prompt: str,
|
73 |
+
guidance_scale: float = 10.0,
|
74 |
+
controlnet_conditioning_scale: tuple[float, float] = (1.0, 1.0),
|
75 |
+
seed: int = -1,
|
76 |
+
controlnet_start: tuple[float, float] = (0.2, 0.0),
|
77 |
+
controlnet_end: tuple[float, float] = (0.95, 1.0),
|
78 |
+
background: str = "gray",
|
79 |
+
error_correction: str = "H",
|
80 |
+
margin: int = 1,
|
81 |
+
module_size: int = 16,
|
82 |
+
width: int = None,
|
83 |
+
height: int = None,
|
84 |
+
):
|
85 |
+
if prompt is None or prompt == "":
|
86 |
+
raise gr.Error("Prompt is required")
|
87 |
+
|
88 |
+
if qr_code_content is None or qr_code_content == "":
|
89 |
+
raise gr.Error("QR Code Content is required")
|
90 |
+
|
91 |
+
if background not in backgrounds:
|
92 |
+
raise gr.Error("Invalid background")
|
93 |
+
|
94 |
+
if error_correction not in correction_map:
|
95 |
+
raise gr.Error("Invalid error correction")
|
96 |
+
|
97 |
+
|
98 |
+
generator = torch.manual_seed(seed) if seed != -1 else main_generator
|
99 |
+
|
100 |
+
# print("Generating QR Code from content")
|
101 |
+
qrcode_images = create_code(qr_code_content, module_size, margin, background, error_correction, False, 1, True)
|
102 |
+
|
103 |
+
out = pipe(
|
104 |
+
prompt=prompt,
|
105 |
+
negative_prompt=negative_prompt,
|
106 |
+
image=list(qrcode_images),
|
107 |
+
width=qrcode_images[0].width,
|
108 |
+
height=qrcode_images[0].height,
|
109 |
+
guidance_scale=float(guidance_scale),
|
110 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
111 |
+
# controlnet_start=controlnet_start,
|
112 |
+
# controlnet_end=controlnet_end,
|
113 |
+
controlnet_guidance=[(controlnet_start[0], controlnet_end[0]), (controlnet_start[1], controlnet_end[1])],
|
114 |
+
generator=generator,
|
115 |
+
num_inference_steps=40,
|
116 |
+
)
|
117 |
+
return out.images[0]
|
118 |
+
|
119 |
+
with gr.Blocks() as blocks:
|
120 |
+
with gr.Row():
|
121 |
+
with gr.Column():
|
122 |
+
qr_code_content = gr.Textbox(
|
123 |
+
label="QR Code Content",
|
124 |
+
info="QR Code Content or URL",
|
125 |
+
value="",
|
126 |
+
)
|
127 |
+
|
128 |
+
prompt = gr.Textbox(
|
129 |
+
label="Prompt",
|
130 |
+
info="Prompt that guides the generation towards",
|
131 |
+
)
|
132 |
+
negative_prompt = gr.Textbox(
|
133 |
+
label="Negative Prompt",
|
134 |
+
value="ugly, disfigured, low quality, blurry, nsfw",
|
135 |
+
)
|
136 |
+
|
137 |
+
with gr.Accordion(
|
138 |
+
label="Params: The generated QR Code functionality is largely influenced by the parameters detailed below",
|
139 |
+
open=True,
|
140 |
+
):
|
141 |
+
controlnet_conditioning_scale = gr.Slider(
|
142 |
+
minimum=0.5,
|
143 |
+
maximum=2.5,
|
144 |
+
step=0.01,
|
145 |
+
value=1.5,
|
146 |
+
label="Controlnet Conditioning Scale",
|
147 |
+
)
|
148 |
+
guidance_scale = gr.Slider(
|
149 |
+
minimum=0.0,
|
150 |
+
maximum=25.0,
|
151 |
+
step=0.25,
|
152 |
+
value=7,
|
153 |
+
label="Guidance Scale",
|
154 |
+
)
|
155 |
+
seed = gr.Number(
|
156 |
+
minimum=-1,
|
157 |
+
maximum=9999999999,
|
158 |
+
step=1,
|
159 |
+
value=2313123,
|
160 |
+
label="Seed",
|
161 |
+
randomize=True,
|
162 |
+
)
|
163 |
+
controlnet_start_0 = gr.Slider(
|
164 |
+
minimum=0.0,
|
165 |
+
maximum=1.0,
|
166 |
+
step=0.01,
|
167 |
+
value=0.2,
|
168 |
+
label="Controlnet Start 0",
|
169 |
+
)
|
170 |
+
controlnet_start_1 = gr.Slider(
|
171 |
+
minimum=0.0,
|
172 |
+
maximum=1.0,
|
173 |
+
step=0.01,
|
174 |
+
value=0.0,
|
175 |
+
label="Controlnet Start 1",
|
176 |
+
)
|
177 |
+
controlnet_end_0 = gr.Slider(
|
178 |
+
minimum=0.0,
|
179 |
+
maximum=1.0,
|
180 |
+
step=0.01,
|
181 |
+
value=0.95,
|
182 |
+
label="Controlnet End 0",
|
183 |
+
)
|
184 |
+
controlnet_end_1 = gr.Slider(
|
185 |
+
minimum=0.0,
|
186 |
+
maximum=1.0,
|
187 |
+
step=0.01,
|
188 |
+
value=1.0,
|
189 |
+
label="Controlnet End 1",
|
190 |
+
)
|
191 |
+
background = gr.Dropdown(
|
192 |
+
label="Background",
|
193 |
+
choices=backgrounds,
|
194 |
+
value="gray",
|
195 |
+
)
|
196 |
+
error_correction = gr.Dropdown(
|
197 |
+
label="Error Correction",
|
198 |
+
choices=correction_map.keys(),
|
199 |
+
value="H",
|
200 |
+
)
|
201 |
+
margin = gr.Slider(
|
202 |
+
minimum=0,
|
203 |
+
maximum=10,
|
204 |
+
step=1,
|
205 |
+
value=1,
|
206 |
+
label="Margin",
|
207 |
+
)
|
208 |
+
module_size = gr.Slider(
|
209 |
+
minimum=1,
|
210 |
+
maximum=100,
|
211 |
+
step=1,
|
212 |
+
value=16,
|
213 |
+
label="Module Size",
|
214 |
+
)
|
215 |
+
width = gr.Slider(
|
216 |
+
minimum=512,
|
217 |
+
maximum=1024,
|
218 |
+
step=256,
|
219 |
+
value=512,
|
220 |
+
label="Width",
|
221 |
+
)
|
222 |
+
height = gr.Slider(
|
223 |
+
minimum=512,
|
224 |
+
maximum=1024,
|
225 |
+
step=256,
|
226 |
+
value=512,
|
227 |
+
label="Height",
|
228 |
+
)
|
229 |
+
with gr.Row():
|
230 |
+
run_btn = gr.Button("Run")
|
231 |
+
with gr.Column():
|
232 |
+
result_image = gr.Image(label="Result Image", elem_id="result_image")
|
233 |
+
run_btn.click(
|
234 |
+
inference_map,
|
235 |
+
inputs=[
|
236 |
+
qr_code_content,
|
237 |
+
prompt,
|
238 |
+
negative_prompt,
|
239 |
+
guidance_scale,
|
240 |
+
controlnet_conditioning_scale,
|
241 |
+
seed,
|
242 |
+
controlnet_start_0,
|
243 |
+
controlnet_start_1,
|
244 |
+
controlnet_end_0,
|
245 |
+
controlnet_end_1,
|
246 |
+
background,
|
247 |
+
error_correction,
|
248 |
+
margin,
|
249 |
+
module_size,
|
250 |
+
width,
|
251 |
+
height,
|
252 |
+
],
|
253 |
+
outputs=[result_image],
|
254 |
+
)
|
255 |
+
|
256 |
+
# login = os.environ.get("LOGIN", "admin")
|
257 |
+
# password = os.environ.get("PASSWORD", "1234")
|
258 |
+
|
259 |
+
blocks.queue(concurrency_count=1, max_size=40)
|
260 |
+
blocks.launch(share=False)
|
261 |
+
# blocks.launch(share=False, auth=(login, password))
|
generate_code.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import qrcode
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import base64
|
5 |
+
|
6 |
+
correction_map = {
|
7 |
+
'L': qrcode.constants.ERROR_CORRECT_L,
|
8 |
+
'M': qrcode.constants.ERROR_CORRECT_M,
|
9 |
+
'Q': qrcode.constants.ERROR_CORRECT_Q,
|
10 |
+
'H': qrcode.constants.ERROR_CORRECT_H,
|
11 |
+
}
|
12 |
+
|
13 |
+
backgrounds = ['white', 'black', 'gray', 'noise']
|
14 |
+
|
15 |
+
bg_map = {
|
16 |
+
'white': 255,
|
17 |
+
'black': 0,
|
18 |
+
'gray': 128,
|
19 |
+
}
|
20 |
+
|
21 |
+
def create_code(text, module_size, margin, background, error_correction, centered, submodule_prop, split=False):
|
22 |
+
qr = qrcode.QRCode(
|
23 |
+
version=1,
|
24 |
+
error_correction=correction_map[error_correction],
|
25 |
+
box_size=module_size,
|
26 |
+
border=margin if margin > 0 else 1,
|
27 |
+
)
|
28 |
+
qr.add_data(text)
|
29 |
+
qr.make(fit=True)
|
30 |
+
|
31 |
+
img = qr.make_image(fill_color="black", back_color="white")
|
32 |
+
|
33 |
+
# find smallest image size multiple of 256 that can fit qr
|
34 |
+
offset_min = 8 * module_size
|
35 |
+
w, h = img.size
|
36 |
+
|
37 |
+
mask = None
|
38 |
+
|
39 |
+
if margin == 0:
|
40 |
+
corner_size = 9 * module_size
|
41 |
+
# make a mask that hides the margin when not in the corners
|
42 |
+
mask = np.ones((h, w)).astype(bool)
|
43 |
+
mask[corner_size:-corner_size, :] = False
|
44 |
+
mask[:, corner_size:-corner_size] = False
|
45 |
+
mask[-corner_size:, -corner_size:] = False
|
46 |
+
mask[module_size:-module_size, module_size:-module_size] = True
|
47 |
+
|
48 |
+
if submodule_prop != 1:
|
49 |
+
submodule_size = round(module_size * submodule_prop)
|
50 |
+
k = (module_size - submodule_size) // 2
|
51 |
+
# qr_array = np.array(img).reshape((h // module_size, w // module_size, module_size, module_size))
|
52 |
+
new_mask = np.zeros((h // module_size, module_size, w // module_size, module_size)).astype(bool)
|
53 |
+
new_mask[:, k:k+submodule_size, :, k:k+submodule_size] = True
|
54 |
+
mask = np.logical_and(mask, new_mask.reshape((h, w)))
|
55 |
+
|
56 |
+
w = (w + 255 + offset_min) // 256 * 256
|
57 |
+
h = (h + 255 + offset_min) // 256 * 256
|
58 |
+
|
59 |
+
# create new image with background chosen by user
|
60 |
+
if background == 'noise':
|
61 |
+
# noise = np.random.randint(0, 256, (h // module_size, w // module_size), dtype=np.uint8)
|
62 |
+
noise = np.random.normal(128, 64, (h // module_size, w // module_size)).astype(np.uint8)
|
63 |
+
# noise = (noise // 128) * 255
|
64 |
+
noise = np.round(noise / 128) * 128
|
65 |
+
# clamp values
|
66 |
+
noise = np.clip(noise, 0, 255)
|
67 |
+
|
68 |
+
bg = Image.fromarray(noise.astype(np.uint8)).resize((w, h), Image.NEAREST)
|
69 |
+
else:
|
70 |
+
bg = Image.new('L', (w, h), bg_map[background])
|
71 |
+
|
72 |
+
# paste qr code in the center of the image
|
73 |
+
if centered:
|
74 |
+
coords = ((w - img.size[0]) // 2, (h - img.size[1]) // 2)
|
75 |
+
else:
|
76 |
+
# paste it aligned on module size, closest to center
|
77 |
+
coords = ((w - img.size[0]) // 2 // module_size * module_size, (h - img.size[1]) // 2 // module_size * module_size)
|
78 |
+
|
79 |
+
if mask is not None:
|
80 |
+
new_img = Image.new('L', img.size, bg_map['gray'] if background == 'noise' else bg_map[background])
|
81 |
+
new_img.paste(img, mask=Image.fromarray(mask))
|
82 |
+
bg.paste(new_img, coords)
|
83 |
+
else:
|
84 |
+
bg.paste(img, coords)
|
85 |
+
|
86 |
+
if split:
|
87 |
+
# isolate the 3 qr markers, paste them onto a new gray image
|
88 |
+
m_size = module_size * 9
|
89 |
+
|
90 |
+
new_bg = Image.new('L', (w, h), bg_map['gray'])
|
91 |
+
|
92 |
+
# create mask for the 3 markers from a numpy array
|
93 |
+
mask = np.zeros((h, w), dtype=bool)
|
94 |
+
mask[coords[1]:coords[1] + m_size, coords[0]:coords[0] + m_size] = True
|
95 |
+
mask[coords[1]:coords[1] + m_size, coords[0] + img.size[0] - m_size:coords[0] + img.size[0]] = True
|
96 |
+
mask[coords[1] + img.size[1] - m_size:coords[1] + img.size[1], coords[0]:coords[0] + m_size] = True
|
97 |
+
|
98 |
+
# paste the 3 markers on the new image
|
99 |
+
new_bg.paste(bg, mask=Image.fromarray(mask))
|
100 |
+
|
101 |
+
return bg, new_bg
|
102 |
+
else:
|
103 |
+
return bg,
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers
|
2 |
+
transformers
|
3 |
+
accelerate
|
4 |
+
torch
|
5 |
+
xformers
|
6 |
+
gradio
|
7 |
+
Pillow
|
8 |
+
qrcode
|
9 |
+
numpy
|