Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,89 +1,90 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
-
import cv2
|
6 |
import matplotlib.pyplot as plt
|
7 |
from PIL import Image
|
8 |
from transformers import AutoImageProcessor, SiglipForImageClassification
|
9 |
|
10 |
-
# β
Load model
|
11 |
model_name = "prithivMLmods/deepfake-detector-model-v1"
|
12 |
processor = AutoImageProcessor.from_pretrained(model_name)
|
13 |
model = SiglipForImageClassification.from_pretrained(model_name)
|
14 |
model.eval()
|
15 |
|
16 |
-
# β
|
17 |
face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
|
18 |
|
19 |
-
# β
Deepfake
|
20 |
-
def
|
21 |
if video_path is None:
|
22 |
-
return "β Please upload a
|
23 |
|
24 |
cap = cv2.VideoCapture(video_path)
|
25 |
-
|
26 |
-
|
27 |
-
max_frames =
|
28 |
|
29 |
while True:
|
30 |
ret, frame = cap.read()
|
31 |
-
if not ret or
|
32 |
break
|
33 |
|
34 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
35 |
-
faces = face_detector.detectMultiScale(gray, 1.1,
|
36 |
|
37 |
-
|
38 |
-
|
39 |
face = frame[y:y+h, x:x+w]
|
40 |
if face.size == 0:
|
41 |
continue
|
42 |
|
43 |
face_rgb = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
44 |
-
|
45 |
-
inputs = processor(images=
|
46 |
|
47 |
with torch.no_grad():
|
48 |
logits = model(**inputs).logits
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
|
54 |
cap.release()
|
55 |
|
56 |
-
if not
|
57 |
-
return "β No faces
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
result = f""
|
62 |
-
π― **Result:** {label}
|
63 |
-
π’ Avg Confidence: {avg_conf:.2f}
|
64 |
-
π Frames Analyzed: {len(preds)}
|
65 |
-
"""
|
66 |
|
67 |
-
# β
|
68 |
-
fig, ax = plt.subplots()
|
69 |
-
ax.hist(
|
70 |
ax.set_title("Fake Confidence per Frame")
|
71 |
-
ax.set_xlabel("
|
72 |
-
ax.set_ylabel("
|
73 |
ax.grid(True)
|
74 |
|
75 |
return result, fig
|
76 |
|
77 |
# β
Gradio interface
|
78 |
with gr.Blocks() as demo:
|
79 |
-
gr.Markdown("## π Deepfake Detector (
|
80 |
-
gr.Markdown("Upload a short `.mp4` video
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
|
87 |
-
|
88 |
|
89 |
demo.queue().launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import cv2
|
3 |
import torch
|
4 |
import numpy as np
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
from PIL import Image
|
7 |
from transformers import AutoImageProcessor, SiglipForImageClassification
|
8 |
|
9 |
+
# β
Load model and processor (no manual files)
|
10 |
model_name = "prithivMLmods/deepfake-detector-model-v1"
|
11 |
processor = AutoImageProcessor.from_pretrained(model_name)
|
12 |
model = SiglipForImageClassification.from_pretrained(model_name)
|
13 |
model.eval()
|
14 |
|
15 |
+
# β
Face detector
|
16 |
face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
|
17 |
|
18 |
+
# β
Deepfake detection function
|
19 |
+
def analyze(video_path):
|
20 |
if video_path is None:
|
21 |
+
return "β Please upload a video", None
|
22 |
|
23 |
cap = cv2.VideoCapture(video_path)
|
24 |
+
frame_preds = []
|
25 |
+
frame_count = 0
|
26 |
+
max_frames = 60
|
27 |
|
28 |
while True:
|
29 |
ret, frame = cap.read()
|
30 |
+
if not ret or frame_count >= max_frames:
|
31 |
break
|
32 |
|
33 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
34 |
+
faces = face_detector.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)
|
35 |
|
36 |
+
found = False
|
37 |
+
for (x, y, w, h) in faces:
|
38 |
face = frame[y:y+h, x:x+w]
|
39 |
if face.size == 0:
|
40 |
continue
|
41 |
|
42 |
face_rgb = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
43 |
+
pil_image = Image.fromarray(face_rgb)
|
44 |
+
inputs = processor(images=pil_image, return_tensors="pt")
|
45 |
|
46 |
with torch.no_grad():
|
47 |
logits = model(**inputs).logits
|
48 |
+
fake_prob = torch.softmax(logits, dim=-1)[0][1].item()
|
49 |
+
|
50 |
+
frame_preds.append(fake_prob)
|
51 |
+
found = True
|
52 |
+
break
|
53 |
+
|
54 |
+
if not found:
|
55 |
+
frame_preds.append(0.5) # neutral prediction
|
56 |
|
57 |
+
frame_count += 1
|
58 |
|
59 |
cap.release()
|
60 |
|
61 |
+
if not frame_preds:
|
62 |
+
return "β No faces found. Try a better-quality video.", None
|
63 |
|
64 |
+
avg = np.mean(frame_preds)
|
65 |
+
verdict = "FAKE" if avg > 0.5 else "REAL"
|
66 |
+
result = f"β
FINAL RESULT: **{verdict}**\nπ’ Confidence: {avg:.2f}"
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
# β
Plot
|
69 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
70 |
+
ax.hist(frame_preds, bins=10, color="red" if avg > 0.5 else "green", edgecolor="black")
|
71 |
ax.set_title("Fake Confidence per Frame")
|
72 |
+
ax.set_xlabel("Confidence (0=Real, 1=Fake)")
|
73 |
+
ax.set_ylabel("Frame Count")
|
74 |
ax.grid(True)
|
75 |
|
76 |
return result, fig
|
77 |
|
78 |
# β
Gradio interface
|
79 |
with gr.Blocks() as demo:
|
80 |
+
gr.Markdown("## π Deepfake Detector (Colab Version Converted to Gradio)")
|
81 |
+
gr.Markdown("Upload a short `.mp4` video and get a REAL or FAKE decision with confidence histogram.")
|
82 |
|
83 |
+
video = gr.Video(label="Upload your video")
|
84 |
+
result = gr.Markdown()
|
85 |
+
plot = gr.Plot()
|
86 |
+
button = gr.Button("π Analyze")
|
87 |
|
88 |
+
button.click(fn=analyze, inputs=video, outputs=[result, plot])
|
89 |
|
90 |
demo.queue().launch()
|