mookkanvas commited on
Commit
b913cef
·
1 Parent(s): 49b52c9

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -0
app.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ from PIL import Image
4
+ import requests
5
+ from io import BytesIO
6
+
7
+ model_name = "nlpconnect/vit-gpt2-image-captioning"
8
+ model = AutoModelForCausalLM.from_pretrained(model_name)
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+
11
+ def generate_caption(image):
12
+ image = image.convert("RGB")
13
+
14
+ image = image.resize((224, 224))
15
+
16
+ inputs = tokenizer("Image caption: ", return_tensors="pt", max_length=30, truncation=True)
17
+
18
+ with st.spinner("Generating caption..."):
19
+ caption_ids = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
20
+
21
+ generated_caption = tokenizer.decode(caption_ids[0], skip_special_tokens=True)
22
+
23
+ return generated_caption
24
+
25
+ def main():
26
+ st.title("Image Captioning App")
27
+
28
+ with st.form("my_form"):
29
+ uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
30
+
31
+ if uploaded_file is not None:
32
+ image = Image.open(uploaded_file)
33
+ st.image(image, caption="Uploaded Image", use_column_width=True)
34
+
35
+ clicked = st.form_submit_button("Generate Caption")
36
+
37
+ if clicked and uploaded_file is not None:
38
+ caption = generate_caption(image)
39
+ st.success("Generated Caption:")
40
+ st.write(caption)
41
+
42
+ if __name__ == "__main__":
43
+ main()