Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,012 Bytes
17aa0b2 4d2fd0f 0b6d516 4d2fd0f 0b6d516 4d2fd0f 0b6d516 4d2fd0f c362437 4d2fd0f 9f8fda1 4d2fd0f 9f8fda1 4d2fd0f 9f8fda1 4d2fd0f 9f8fda1 4d2fd0f 9f8fda1 4d2fd0f 9f8fda1 4d2fd0f 9f8fda1 4d2fd0f 1ab5922 4d2fd0f c154b38 4d2fd0f 9f8fda1 4d2fd0f 9f8fda1 4d2fd0f 9f8fda1 4d2fd0f 9f8fda1 4d2fd0f 9f8fda1 4d2fd0f 9f8fda1 4d2fd0f fef07ac 4d2fd0f 9f8fda1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import spaces
import gradio as gr
import os
import torch
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
from PIL import Image
from transformers import AutoModelForCausalLM
matplotlib.use("Agg") # Use Agg backend for non-interactive plotting
os.environ["HF_TOKEN"] = os.environ.get("TOKEN_FROM_SECRET") or True
model = AutoModelForCausalLM.from_pretrained(
"vikhyatk/moondream-next",
trust_remote_code=True,
torch_dtype=torch.float16,
device_map={"": "cuda"},
revision="56a3adeae60809e4269c544cde376feb20637ee0"
)
def visualize_faces_and_gaze(face_boxes, gaze_points=None, image=None, show_plot=True):
"""Visualization function that can handle faces without gaze data"""
# Calculate figure size based on image aspect ratio
if image is not None:
height, width = image.shape[:2]
aspect_ratio = width / height
fig_height = 6 # Base height
fig_width = fig_height * aspect_ratio
else:
width, height = 800, 600
fig_width, fig_height = 10, 8
# Create figure with tight layout
fig = plt.figure(figsize=(fig_width, fig_height))
ax = fig.add_subplot(111)
if image is not None:
ax.imshow(image)
else:
ax.set_facecolor("#1a1a1a")
fig.patch.set_facecolor("#1a1a1a")
colors = plt.cm.rainbow(np.linspace(0, 1, len(face_boxes)))
for i, (face_box, color) in enumerate(zip(face_boxes, colors)):
hex_color = "#{:02x}{:02x}{:02x}".format(
int(color[0] * 255), int(color[1] * 255), int(color[2] * 255)
)
x, y, width_box, height_box = face_box
face_center_x = x + width_box / 2
face_center_y = y + height_box / 2
# Draw face bounding box
face_rect = plt.Rectangle(
(x, y), width_box, height_box, fill=False, color=hex_color, linewidth=2
)
ax.add_patch(face_rect)
# Draw gaze line if gaze data is available
if gaze_points is not None and i < len(gaze_points) and gaze_points[i] is not None:
gaze_x, gaze_y = gaze_points[i]
points = 50
alphas = np.linspace(0.8, 0, points)
x_points = np.linspace(face_center_x, gaze_x, points)
y_points = np.linspace(face_center_y, gaze_y, points)
for j in range(points - 1):
ax.plot(
[x_points[j], x_points[j + 1]],
[y_points[j], y_points[j + 1]],
color=hex_color,
alpha=alphas[j],
linewidth=4,
)
ax.scatter(gaze_x, gaze_y, color=hex_color, s=100, zorder=5)
ax.scatter(gaze_x, gaze_y, color="white", s=50, zorder=6)
# Set plot limits and remove axes
ax.set_xlim(0, width)
ax.set_ylim(height, 0)
ax.set_aspect("equal")
ax.set_xticks([])
ax.set_yticks([])
# Remove padding around the plot
plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
return fig
@spaces.GPU(duration=15)
def process_image(input_image):
if input_image is None:
return None, ""
try:
# Convert to PIL Image if needed
if isinstance(input_image, np.ndarray):
pil_image = Image.fromarray(input_image)
else:
pil_image = input_image
# Get image encoding
enc_image = model.encode_image(pil_image)
flipped_pil = pil_image.copy().transpose(method=Image.FLIP_LEFT_RIGHT)
flip_enc_image = model.encode_image(flipped_pil)
# Detect faces
faces = model.detect(enc_image, "face")["objects"]
if not faces:
return None, "No faces detected in the image."
# Process each face
face_boxes = []
gaze_points = []
for face in faces:
# Add face bounding box regardless of gaze detection
face_box = (
face["x_min"] * pil_image.width,
face["y_min"] * pil_image.height,
(face["x_max"] - face["x_min"]) * pil_image.width,
(face["y_max"] - face["y_min"]) * pil_image.height,
)
face_boxes.append(face_box)
# Try to detect gaze
gaze = model.detect_gaze(enc_image, face=face, unstable_settings={
"prioritize_accuracy": True,
"flip_enc_img": flip_enc_image
})["gaze"]
if gaze is not None:
gaze_point = (
gaze["x"] * pil_image.width,
gaze["y"] * pil_image.height,
)
gaze_points.append(gaze_point)
else:
gaze_points.append(None)
# Create visualization
image_array = np.array(pil_image)
fig = visualize_faces_and_gaze(
face_boxes, gaze_points, image=image_array, show_plot=False
)
faces_with_gaze = sum(1 for gp in gaze_points if gp is not None)
status = f"Detected {len(faces)} faces. {faces_with_gaze - len(faces)} faces identified as looking out of frame."
return fig, status
except Exception as e:
return None, f"Error processing image: {str(e)}"
with gr.Blocks(title="Moondream Gaze Detection") as app:
gr.Markdown("# π Moondream Gaze Detection")
gr.Markdown("Upload an image to detect faces and visualize their gaze directions.")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
with gr.Column():
output_text = gr.Textbox(label="Status")
output_plot = gr.Plot(label="Visualization")
input_image.change(
fn=process_image, inputs=[input_image], outputs=[output_plot, output_text]
)
gr.Examples(
examples=["demo1.jpg", "demo2.jpg", "demo3.jpg", "demo4.jpg", "demo5.jpg", "demo6.jpg", "demo7.jpg", "demo8.jpg"],
inputs=input_image,
)
if __name__ == "__main__":
app.launch() |