Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,49 @@
|
|
1 |
import gradio as gr
|
2 |
import torch, os
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
4 |
from threading import Thread
|
5 |
|
6 |
-
# Set the number of threads for PyTorch
|
7 |
torch.set_num_threads(3)
|
8 |
|
9 |
-
# Your Hugging Face token and model identifiers
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
11 |
-
MODEL_NAME = "google/gemma-2b-it"
|
12 |
|
13 |
-
#
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
15 |
-
|
16 |
-
# Load the model and switch it to evaluation mode
|
17 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, use_auth_token=HF_TOKEN).eval()
|
18 |
-
|
19 |
-
# Apply dynamic quantization
|
20 |
-
quantized_model = torch.quantization.quantize_dynamic(
|
21 |
-
model,
|
22 |
-
{torch.nn.Linear}, # Specify the layer types to quantize
|
23 |
-
dtype=torch.qint8 # Target datatype for quantized weights
|
24 |
-
)
|
25 |
|
26 |
def count_tokens(text):
|
27 |
-
|
28 |
return len(tokenizer.tokenize(text))
|
29 |
|
|
|
30 |
def predict(message, history):
|
31 |
-
|
32 |
formatted_prompt = f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
|
33 |
model_inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
title="Quantized Gemma 2B Chat",
|
61 |
-
description="This is a Gradio interface for interacting with a quantized version of the Gemma 2B model.")
|
62 |
-
|
63 |
-
# Launch the interface
|
64 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch, os
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from transformers import StoppingCriteria, TextIteratorStreamer
|
5 |
from threading import Thread
|
6 |
|
|
|
7 |
torch.set_num_threads(3)
|
8 |
|
|
|
9 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
10 |
|
11 |
+
# Loading the tokenizer and model from Hugging Face's model hub.
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", use_auth_token=HF_TOKEN)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", use_auth_token=HF_TOKEN).eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def count_tokens(text):
|
16 |
+
|
17 |
return len(tokenizer.tokenize(text))
|
18 |
|
19 |
+
# Function to generate model predictions.
|
20 |
def predict(message, history):
|
21 |
+
|
22 |
formatted_prompt = f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
|
23 |
model_inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
24 |
+
|
25 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=120., skip_prompt=True, skip_special_tokens=True)
|
26 |
+
|
27 |
+
generate_kwargs = dict(
|
28 |
+
model_inputs,
|
29 |
+
streamer=streamer,
|
30 |
+
max_new_tokens=2048 - count_tokens(formatted_prompt),
|
31 |
+
top_p=0.2,
|
32 |
+
top_k=20,
|
33 |
+
temperature=0.1,
|
34 |
+
repetition_penalty=2.0,
|
35 |
+
length_penalty=-0.5,
|
36 |
+
num_beams=1
|
37 |
+
)
|
38 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
39 |
+
t.start() # Starting the generation in a separate thread.
|
40 |
+
partial_message = ""
|
41 |
+
for new_token in streamer:
|
42 |
+
partial_message += new_token
|
43 |
+
yield partial_message
|
44 |
+
|
45 |
+
# Setting up the Gradio chat interface.
|
46 |
+
gr.ChatInterface(predict,
|
47 |
+
title="Gemma 2b Instruct Chat",
|
48 |
+
description=None
|
49 |
+
).launch() # Launching the web interface.
|
|
|
|
|
|
|
|
|
|