from sentence_transformers import SentenceTransformer import litserve as ls class EmbeddingAPI(ls.LitAPI): def setup(self, device): self.instruction = "Represent this sentence for searching relevant passages: " self.model = SentenceTransformer('BAAI/bge-large-en-v1.5', device=device) def decode_request(self, request): return request["input"] def predict(self, query): return self.model.encode([self.instruction + query], normalize_embeddings=True) def encode_response(self, output): return {"embedding": output[0].tolist()} if __name__ == "__main__": api = EmbeddingAPI() server = ls.LitServer(api, devices="cpu") server.run(port=7860)