rag-demo / main.py
moraxgiga's picture
Update main.py
3ee1de0 verified
raw
history blame
1.67 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, root_validator
from transformers import AutoModel
from typing import List
import os
if platform.system() == "Windows":
print("Windows detected. Assigning cache directory to Transformers in AppData\Local.")
transformers_cache_directory = os.path.join(os.getenv('LOCALAPPDATA'), 'transformers_cache')
if not os.path.exists(transformers_cache_directory):
try:
os.mkdir(transformers_cache_directory)
print(f"First launch. Directory '{transformers_cache_directory}' created successfully.")
except OSError as e:
print(f"Error creating directory '{transformers_cache_directory}': {e}")
else:
print(f"Directory '{transformers_cache_directory}' already exists.")
os.environ['TRANSFORMERS_CACHE'] = transformers_cache_directory
print("Environment variable assigned.")
del transformers_cache_directory
else:
print("Windows not detected. Assignment of Transformers cache directory not necessary.")
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-en',token = "hf_GkUomApayMBJteRvrjvslfyLRvfp QRckba".replace(" ", ""), trust_remote_code=True)
app = FastAPI()
class Validation(BaseModel):
prompt: List[str]
#Endpoint
@app.post("/jina_embedding")
async def chaatie_agent(item: Validation):
# Assuming model.encode returns a list of numpy arrays (one for each prompt)
embeddings = model.encode(item.prompt)
# Convert each numpy array in the list to a list
embeddings_list = [embedding.tolist() for embedding in embeddings]
return {"embeddings": embeddings_list}