File size: 6,794 Bytes
c433bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import cv2
import numpy as np
import streamlit as st
from google.generativeai import configure, GenerativeModel
import base64
from datetime import datetime

# Page configuration
st.set_page_config(
    page_title="Advanced Dental X-Ray Analysis System",
    page_icon="🦷",
    layout="wide"
)

# Custom CSS for better appearance
st.markdown("""

    <style>

    .main {

        padding: 2rem;

    }

    .stButton>button {

        width: 100%;

        background-color: #0083B8;

        color: white;

    }

    .disclaimer {

        background-color: #FFF3CD;

        padding: 1rem;

        border-radius: 5px;

        margin: 1rem 0;

    }

    </style>

""", unsafe_allow_html=True)

# Main title with professional styling
st.title("🦷 Advanced Dental X-Ray Analysis System")
st.markdown("---")

# Initialize session state
if 'patient_history' not in st.session_state:
    st.session_state.patient_history = {}

# Sidebar for API configuration
with st.sidebar:
    st.header("Configuration")
    api_key = st.text_input("Your API Key", type="password")
    if not api_key:
        api_key = os.getenv("GEMINI_API_KEY")
        if not api_key:
            st.error("⚠️ Please provide an API key.")
            st.stop()

    st.markdown("---")
    st.header("Patient Information")

    # Patient history form
    with st.form("patient_history"):
        st.session_state.patient_history.update({
            'name': st.text_input("Patient Name"),
            'age': st.number_input("Age", 1, 120),
            'gender': st.selectbox("Gender", ["Male", "Female", "Other"]),
            'medical_history': st.multiselect("Medical History",
                                              ["Diabetes", "Hypertension", "Heart Disease", "None"]),
            'dental_complaints': st.text_area("Current Dental Complaints"),
            'previous_treatments': st.text_area("Previous Dental Treatments"),
            'smoking': st.selectbox("Smoking Status", ["Non-smoker", "Former smoker", "Current smoker"]),
            'last_dental_visit': st.date_input("Last Dental Visit")
        })
        submit_button = st.form_submit_button("Save Patient Information")

# Configure Gemini Pro
configure(api_key=api_key)
model = GenerativeModel("gemini-pro")

# Main content area
col1, col2 = st.columns([1, 1])

with col1:
    st.header("X-Ray Upload & Processing")
    uploaded_file = st.file_uploader("Upload a dental X-ray image", type=["jpg", "jpeg", "png"])

    if uploaded_file:
        # Display original image
        st.image(uploaded_file, caption="Original X-ray", use_column_width=True)

        # Image processing options
        st.subheader("Image Enhancement Options")
        denoise_strength = st.slider("Denoising Strength", 1, 20, 10)
        contrast_limit = st.slider("Contrast Enhancement", 1.0, 5.0, 2.0)

        # Process image
        img = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), cv2.IMREAD_GRAYSCALE)

        # Enhanced preprocessing
        img = cv2.fastNlMeansDenoising(img, None, denoise_strength, 7, 21)
        clahe = cv2.createCLAHE(clipLimit=contrast_limit, tileGridSize=(8, 8))
        img = clahe.apply(img)

        # Display enhanced image
        st.image(img, caption="Enhanced X-ray", use_column_width=True)

        # Encode image
        _, img_encoded = cv2.imencode('.png', img)
        base64_image = base64.b64encode(img_encoded).decode('utf-8')

with col2:
    if uploaded_file and 'name' in st.session_state.patient_history and st.session_state.patient_history['name']:
        st.header("Analysis & Results")

        # Analysis options
        analysis_type = st.multiselect("Select Analysis Focus Areas",
                                       ["Cavity Detection", "Bone Density", "Root Canal Assessment",
                                        "Periodontal Status", "Wisdom Teeth", "Overall Assessment"])

        if st.button("Generate Analysis"):
            with st.spinner("Analyzing X-ray..."):
                # Construct detailed prompt
                prompt = f"""

                Please analyze this dental X-ray image with the following context:



                Patient Information:

                - Name: {st.session_state.patient_history['name']}

                - Age: {st.session_state.patient_history['age']}

                - Gender: {st.session_state.patient_history['gender']}

                - Medical History: {', '.join(st.session_state.patient_history['medical_history'])}

                - Current Complaints: {st.session_state.patient_history['dental_complaints']}

                - Previous Treatments: {st.session_state.patient_history['previous_treatments']}

                - Smoking Status: {st.session_state.patient_history['smoking']}



                Focus Areas: {', '.join(analysis_type)}



                Please provide a detailed analysis including:

                1. Identified abnormalities or concerns

                2. Potential diagnosis considerations

                3. Recommended additional examinations if needed

                4. Treatment suggestions

                5. Risk factors based on patient history



                Format the response in a clear, structured manner.

                """

                response = model.generate_content(prompt)

                # Display results
                st.markdown("### Analysis Results")
                st.write(response.text)

                # Generate report
                st.markdown("### Report Generation")
                if st.button("Generate PDF Report"):
                    st.info("Report generation functionality can be implemented here")

                # Display disclaimer
                st.markdown("""

                <div class="disclaimer">

                    <h4>⚠️ Medical Disclaimer</h4>

                    <p>This analysis is generated by AI and is for informational purposes only. 

                    It should not be considered as a definitive diagnosis. Please consult with a 

                    qualified dental professional for accurate diagnosis and treatment planning.</p>

                </div>

                """, unsafe_allow_html=True)
    else:
        st.info("Please upload an X-ray image and complete patient information to proceed with analysis.")

# Footer
st.markdown("---")
st.markdown(
    """

    <div style='text-align: center'>

        <p>Advanced Dental X-Ray Analysis System v2.0</p>

        <p>Developed by:</p>

        <p>Supervised and reviewed by:</p>

        <p>Participants:</p>

        <p>UI Designer:</p>

    </div>

    """,
    unsafe_allow_html=True
)