import fastapi from fastapi.responses import JSONResponse from fastapi_users import schemas from time import time #from fastapi.middleware.cors import CORSMiddleware #MODEL_PATH = "./qwen1_5-0_5b-chat-q4_0.gguf" #"./qwen1_5-0_5b-chat-q4_0.gguf" import logging import llama_cpp import llama_cpp.llama_tokenizer from pydantic import BaseModel from fastapi import APIRouter from app.users import current_active_user #from transformers import AutoModelForCausalLM from transformers import AutoTokenizer, pipeline from optimum.onnxruntime import ORTModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat") model = ORTModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B-Chat", export=True) class GenModel(BaseModel): question: str system: str = "You are a helpful medical AI chat assistant. Help as much as you can.Also continuously ask for possible symptoms in order to atat a conclusive ailment or sickness and possible solutions.Remember, response in English." temperature: float = 0.8 seed: int = 101 mirostat_mode: int=2 mirostat_tau: float=4.0 mirostat_eta: float=1.1 class ChatModel(BaseModel): question: str system: str = "You are chatDoctor, a helpful health and medical assistant. You are chatting with a human. Help as much as you can. Also continuously ask for possible symptoms in order to a conclusive ailment or sickness and possible solutions.Remember, response in English." temperature: float = 0.8 seed: int = 101 mirostat_mode: int=2 mirostat_tau: float=4.0 mirostat_eta: float=1.1 llm_chat = llama_cpp.Llama.from_pretrained( repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF", filename="*q4_0.gguf", tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat"), verbose=False, n_ctx=512, n_gpu_layers=0, #chat_format="llama-2" ) llm_generate = llama_cpp.Llama.from_pretrained( repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF", filename="*q4_0.gguf", #tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat"), verbose=False, n_ctx=4096, n_gpu_layers=0, mirostat_mode=2, mirostat_tau=4.0, mirostat_eta=1.1, #chat_format="llama-2" ) # Logger setup logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) #app = fastapi.FastAPI( #title="OpenGenAI", #description="Your Excellect AI Physician") """ app.add_middleware( CORSMiddleware, allow_origins = ["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"] ) """ llm_router = APIRouter(prefix="/llm") @llm_router.get("/health", tags=["llm"]) def health(): return {"status": "ok"} # Chat Completion API @llm_router.post("/chat/", tags=["llm"]) async def chat(chatm:ChatModel):#, user: schemas.BaseUser = fastapi.Depends(current_active_user)): onnx_qa = pipeline("question-answering", model=model, tokenizer=tokenizer) question = chatm.question, context = chatm.system, pred = onnx_qa(question, context) print("pred") return "" """ #chatm.system = chatm.system.format("")#user.email) try: st = time() output = llm_chat.create_chat_completion( messages = chatm.question, temperature = chatm.temperature, seed = chatm.seed, #stream=True ) print(output) #print(output) et = time() output["time"] = et - st #messages.append({'role': "assistant", "content": output['choices'][0]['message']['content']}) #print(messages) return output except Exception as e: logger.error(f"Error in /complete endpoint: {e}") return JSONResponse( status_code=500, content={"message": "Internal Server Error"} ) """ # Chat Completion API @llm_router.post("/generate", tags=["llm"]) async def generate(gen:GenModel):#, user: schemas.BaseUser = fastapi.Depends(current_active_user)): """ gen.system = "You are an helpful medical AI assistant." gen.temperature = 0.5 gen.seed = 42 try: #st = time() output = llm_generate.create_completion( #messages=[ # {"role": "system", "content": gen.system}, # {"role": "user", "content": gen.question}, # ], gen.question, temperature = gen.temperature, seed= gen.seed, #chat_format="llama-2", stream=True, echo = True ) for chunk in output: delta = chunk['choices'][0]#['delta'] print(delta) if 'role' in delta: print(delta['role'], end=': ') elif 'content' in delta: print(delta['content'], end='') #print(chunk) #et = time() #output["time"] = et - st #print(output) except Exception as e: logger.error(f"Error in /generate endpoint: {e}") return JSONResponse( status_code=500, content={"message": "Internal Server Error"} ) """ onnx_gen = pipeline("text-generation", model=model, tokenizer=tokenizer) generate = onnx_gen(gen.question) return generate