|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
|
|
DATA_PATH = 'data/' |
|
DB_FAISS_PATH = 'vectorstore/db_faiss' |
|
|
|
|
|
def create_vector_db(): |
|
loader = DirectoryLoader(DATA_PATH, |
|
glob='*.pdf', |
|
loader_cls=PyPDFLoader) |
|
|
|
documents = loader.load() |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, |
|
chunk_overlap=50) |
|
texts = text_splitter.split_documents(documents) |
|
|
|
embeddings = HuggingFaceEmbeddings(model_name='Qwen/Qwen1.5-0.5B-Chat', |
|
model_kwargs={'device': 'cpu'}) |
|
|
|
db = FAISS.from_documents(texts, embeddings) |
|
db.save_local(DB_FAISS_PATH) |
|
|
|
if __name__ == "__main__": |
|
create_vector_db() |