RAGchat / app /llm.py
moriire's picture
Update app/llm.py
df24c3c verified
raw
history blame
4.49 kB
import fastapi
from fastapi.responses import JSONResponse
from fastapi_users import schemas
from time import time
#from fastapi.middleware.cors import CORSMiddleware
#MODEL_PATH = "./qwen1_5-0_5b-chat-q4_0.gguf" #"./qwen1_5-0_5b-chat-q4_0.gguf"
import logging
import llama_cpp
import llama_cpp.llama_tokenizer
from pydantic import BaseModel
from fastapi import APIRouter
from app.users import current_active_user
class GenModel(BaseModel):
question: str
system: str = "You are a helpful medical AI chat assistant. Help as much as you can.Also continuously ask for possible symptoms in order to atat a conclusive ailment or sickness and possible solutions.Remember, response in English."
temperature: float = 0.8
seed: int = 101
mirostat_mode: int=2
mirostat_tau: float=4.0
mirostat_eta: float=1.1
class ChatModel(BaseModel):
question: list
system: str = "You are a helpful AI assistant. You are chatting with a human. Help as much as you can."
#Also continuously ask for possible symptoms in order to atat a conclusive ailment or sickness and possible solutions.Remember, response in English."
temperature: float = 0.8
seed: int = 101
mirostat_mode: int=2
mirostat_tau: float=4.0
mirostat_eta: float=1.1
llm_chat = llama_cpp.Llama.from_pretrained(
repo_id="moriire/healthcare-ai-q2_k",
filename="*.gguf",
tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained("moriire/healthcare-ai-q2_k"),
verbose=False,
n_ctx=256,
n_gpu_layers=0,
#chat_format="llama-2"
)
llm_generate = llama_cpp.Llama.from_pretrained(
repo_id="moriire/healthcare-ai-q2_k",
filename="*.gguf",
tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained("moriire/healthcare-ai-q2_k"),
verbose=False,
n_ctx=4096,
n_gpu_layers=0,
mirostat_mode=2,
mirostat_tau=4.0,
mirostat_eta=1.1,
#chat_format="llama-2"
)
# Logger setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
#app = fastapi.FastAPI(
#title="OpenGenAI",
#description="Your Excellect AI Physician")
"""
app.add_middleware(
CORSMiddleware,
allow_origins = ["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)
"""
llm_router = APIRouter(prefix="/llm")
@llm_router.get("/health", tags=["llm"])
def health():
return {"status": "ok"}
# Chat Completion API
@llm_router.post("/chat/", tags=["llm"])
async def chat(chatm:ChatModel):#, user: schemas.BaseUser = fastapi.Depends(current_active_user)):
#chatm.system = chatm.system.format("")#user.email)
try:
st = time()
output = llm_chat.create_chat_completion(
messages = chatm.question,
temperature = chatm.temperature,
seed = chatm.seed,
#stream=True
)
print(output)
#print(output)
et = time()
output["time"] = et - st
#messages.append({'role': "assistant", "content": output['choices'][0]['message']['content']})
#print(messages)
return output
except Exception as e:
logger.error(f"Error in /complete endpoint: {e}")
return JSONResponse(
status_code=500, content={"message": "Internal Server Error"}
)
# Chat Completion API
@llm_router.post("/generate", tags=["llm"])
async def generate(gen:GenModel):#, user: schemas.BaseUser = fastapi.Depends(current_active_user)):
gen.system = "You are an helpful medical AI assistant."
gen.temperature = 0.5
gen.seed = 42
try:
st = time()
output = llm_generate.create_chat_completion(
messages=[
{"role": "system", "content": gen.system},
{"role": "user", "content": gen.question},
],
temperature = gen.temperature,
seed= gen.seed,
#stream=True,
#echo=True
)
"""
for chunk in output:
delta = chunk['choices'][0]['delta']
if 'role' in delta:
print(delta['role'], end=': ')
elif 'content' in delta:
print(delta['content'], end='')
#print(chunk)
"""
et = time()
output["time"] = et - st
return output
except Exception as e:
logger.error(f"Error in /generate endpoint: {e}")
return JSONResponse(
status_code=500, content={"message": "Internal Server Error"}
)