morinop commited on
Commit
0f5a0e0
·
1 Parent(s): 4521d5d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -1
app.py CHANGED
@@ -1,3 +1,37 @@
1
  import gradio as gr
 
 
 
2
 
3
- gr.Interface.load("models/hubert233/GPTFuzz").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ ### used to evaluate whether the LLM is jailbroken
3
+ from transformers import RobertaForSequenceClassification, RobertaTokenizer
4
+ import torch
5
 
6
+ # os.environ["CUDA_VISIBLE_DEVICES"] = "7"
7
+ # Load model and tokenizer
8
+ print("Loading RoBERTa Checkpoint...")
9
+ ckpt_path = 'hubert233/GPTFuzz'
10
+ model = RobertaForSequenceClassification.from_pretrained(ckpt_path)
11
+ tokenizer = RobertaTokenizer.from_pretrained(ckpt_path)
12
+ print("Loading Done!")
13
+
14
+ def predict(sequence):
15
+ sequences = [sequence]
16
+ # Encoding sequences
17
+ inputs = tokenizer(sequences, padding=True, truncation=True, max_length=512, return_tensors="pt")
18
+
19
+ # Compute token embeddings
20
+ with torch.no_grad():
21
+ outputs = model(**inputs)
22
+
23
+ # Get predictions
24
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
25
+ # print(predictions.shape)
26
+
27
+ # If you want the most likely classes:
28
+ _, predicted_classes = torch.max(predictions, dim=1)
29
+
30
+ # print("Predicted probabilities:", predictions)
31
+ # print("Predicted classes:", predicted_classes)
32
+
33
+ return predicted_classes[0]
34
+
35
+
36
+ iface = gr.Interface(fn=predict, inputs="text", outputs="text")
37
+ iface.launch()