import gradio as gr ### used to evaluate whether the LLM is jailbroken from transformers import RobertaForSequenceClassification, RobertaTokenizer import torch # os.environ["CUDA_VISIBLE_DEVICES"] = "7" # Load model and tokenizer print("Loading RoBERTa Checkpoint...") ckpt_path = 'hubert233/GPTFuzz' model = RobertaForSequenceClassification.from_pretrained(ckpt_path) tokenizer = RobertaTokenizer.from_pretrained(ckpt_path) print("Loading Done!") def predict(sequence): sequences = [sequence] # Encoding sequences inputs = tokenizer(sequences, padding=True, truncation=True, max_length=512, return_tensors="pt") # Compute token embeddings with torch.no_grad(): outputs = model(**inputs) # Get predictions predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) # print(predictions.shape) # If you want the most likely classes: _, predicted_classes = torch.max(predictions, dim=1) # print("Predicted probabilities:", predictions) # print("Predicted classes:", predicted_classes) return predicted_classes[0].item() iface = gr.Interface(fn=predict, inputs="text", outputs="text") iface.launch()