Spaces:
Runtime error
Runtime error
created the app
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## libraries for data preprocessing
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
## libraries for training dl models
|
6 |
+
import tensorflow as tf
|
7 |
+
from tensorflow import keras
|
8 |
+
|
9 |
+
## libraries for reading audio files
|
10 |
+
import librosa as lib
|
11 |
+
|
12 |
+
|
13 |
+
import gradio as gr
|
14 |
+
|
15 |
+
|
16 |
+
## lets load the model
|
17 |
+
model = keras.models.load_model('heartbeatsound_classification.h5')
|
18 |
+
|
19 |
+
def loading_sound_file(sound_file):
|
20 |
+
X, sr = librosa.load(sound_file, sr=sr, duration=duration)
|
21 |
+
dur = librosa.get_duration(y=X, sr=sr)
|
22 |
+
|
23 |
+
# pad audio file same duration
|
24 |
+
if (round(dur) < duration):
|
25 |
+
print ("fixing audio lenght :", file_name)
|
26 |
+
y = librosa.util.fix_length(X, input_length)
|
27 |
+
# extract normalized mfcc feature from data
|
28 |
+
mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sr, n_mfcc=25).T,axis=0)
|
29 |
+
|
30 |
+
data = np.array(mfccs).reshape([-1,1])
|
31 |
+
|
32 |
+
return data
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
def heart_signal_classification(data):
|
37 |
+
x = np.array(image)
|
38 |
+
X = np.array([x])
|
39 |
+
X = preprocess_input(X)
|
40 |
+
pred = model.predict(X)
|
41 |
+
result = pred[0].argmax()
|
42 |
+
## lets create our labels
|
43 |
+
labels = {
|
44 |
+
0: 'Artifact',
|
45 |
+
1: 'Murmur',
|
46 |
+
2: 'Normal'
|
47 |
+
}
|
48 |
+
|
49 |
+
label = labels[pred[0].argmax()]
|
50 |
+
return label
|
51 |
+
################### Gradio Web APP ################################
|
52 |
+
title = "Heart Signal Classification App"
|
53 |
+
Input = gr.Audio(shape=(299, 299), label="Please Upload An Image")
|
54 |
+
Output1 = gr.Textbox(label="Type Of Heart Signal)
|
55 |
+
description = "Type Of Signal: Artifact, Murmur, Normal"
|
56 |
+
iface = gr.Interface(fn=maize_disease_classifier, inputs=Input, outputs=Output1, title=title, description=description)
|
57 |
+
|
58 |
+
iface.launch(inline=False)
|